Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 288: 121671, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35953331

RESUMO

Because oral transmission of SARS-CoV-2 is 3-5 orders of magnitude higher than nasal transmission, we investigated debulking of oral viruses using viral trap proteins (CTB-ACE2, FRIL) expressed in plant cells, delivered through the chewing gum. In omicron nasopharyngeal (NP) samples, the microbubble count (based on N-antigen) was significantly reduced by 20 µg of FRIL (p < 0.0001) and 0.925 µg of CTB-ACE2 (p = 0.0001). Among 20 delta or omicron NP samples, 17 had virus load reduced below the detection level of spike protein in the RAPID assay, after incubation with the CTB-ACE2 gum powder. A dose-dependent 50% plaque reduction with 50-100 ng FRIL or 600-800 µg FRIL gum against Influenza strains H1N1, H3N2, and Coronavirus HCoV-OC43 was observed with both purified FRIL, lablab bean powder or gum. In electron micrographs, large/densely packed clumps of overlapping influenza particles and FRIL protein were observed. Chewing simulator studies revealed that CTB-ACE2 release was time/dose-dependent and release was linear up to 20 min chewing. Phase I/II placebo-controlled, double-blinded clinical trial (IND 154897) is in progress to evaluate viral load in saliva before or after chewing CTB-ACE2/placebo gum. Collectively, this study advances the concept of chewing gum to deliver proteins to debulk oral viruses and decrease infection/transmission.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Enzima de Conversão de Angiotensina 2 , Goma de Mascar , Procedimentos Cirúrgicos de Citorredução , Humanos , Vírus da Influenza A Subtipo H3N2 , Proteínas de Plantas , Pós , SARS-CoV-2 , Proteínas Virais
2.
Langmuir ; 35(39): 12765-12772, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31532686

RESUMO

Colloidal oil-in-water nanoemulsions are gaining increasing interest as a nanoparticle delivery system because of their large oil droplet core that can carry a large payload. In order to formulate these particles with long-term stability, an appropriate oil media and block copolymer pair must be selected. The interaction between the nanoemulsion core and the polymer shell is critical to forming stable nanoparticles. Herein, we probed how interactions between various polymers with hydrocarbon and perfluorocarbon oil media influenced nanoemulsion formation, stability, and size. Through a series of nanoemulsions with unique polymer/oil media combinations, we examined the effects of oil core hydrophobicity, fluorophilicity, surface charge, and volume as well as the effects of polymer tail composition. Surprisingly, we found that nanoemulsions formulated with pure perfluorocarbon oil cores versus perfluoro poly(ether) oil cores exhibited very different characteristics. We also found that both hydrocarbon and fluorocarbon polymer tails interacted favorably with perfluoro poly(ethers) as well as hydrocarbon oil cores forming stable nanoemulsions. We believe these results are focused on the unique properties of perfluorocarbons especially their rigidity, low polarizability, and near-zero surface charge. Interestingly, we saw that perfluoro poly(ethers) deviated from these expected properties resulting in an increased versatility when formulating nanoemulsions with perfluoro poly(ether) oil cores compared to pure perfluorocarbon oil cores. Nanoemulsion size, stability, growth rate, and life time were explored to probe these factors. Experimental and computational data are presented as a rationale.


Assuntos
Óleos/química , Polímeros/química , Água/química , Emulsões , Éteres/química , Modelos Moleculares , Conformação Molecular , Eletricidade Estática
3.
Cell Cycle ; 16(13): 1309-1319, 2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-28594255

RESUMO

The human mitochondrial chaperonin is a macromolecular machine that catalyzes the proper folding of mitochondrial proteins and is of vital importance to all cells. This chaperonin is composed of 2 distinct proteins, Hsp60 and Hsp10, that assemble into large oligomeric complexes that mediate the folding of non-native polypeptides in an ATP dependent manner. Here, we report the bacterial expression and purification of fully assembled human Hsp60 and Hsp10 recombinant proteins and that Hsp60 forms a stable tetradecameric double-ring conformation in the absence of co-chaperonin and nucleotide. Evidence of the stable double-ring conformation is illustrated by the 15 Å resolution electron microscopy reconstruction presented here. Furthermore, our biochemical analyses reveal that the presence of a non-native substrate initiates ATP-hydrolysis within the Hsp60/10 chaperonin to commence protein folding. Collectively, these data provide insight into the architecture of the intermediates used by the human mitochondrial chaperonin along its protein folding pathway and lay a foundation for subsequent high resolution structural investigations into the conformational changes of the mitochondrial chaperonin.


Assuntos
Chaperonina 60/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Chaperonina 10/genética , Chaperonina 10/metabolismo , Chaperonina 60/genética , Difusão Dinâmica da Luz , Escherichia coli/metabolismo , Humanos , Microscopia Eletrônica de Transmissão , Estrutura Quaternária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
4.
PLoS Pathog ; 13(5): e1006200, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28463988

RESUMO

The human papillomavirus type 16 (HPV16) L2 protein acts as a chaperone to ensure that the viral genome (vDNA) traffics from endosomes to the trans-Golgi network (TGN) and eventually the nucleus, where HPV replication occurs. En route to the nucleus, the L2/vDNA complex must translocate across limiting intracellular membranes. The details of this critical process remain poorly characterized. We have developed a system based on subcellular compartmentalization of the enzyme BirA and its cognate substrate to detect membrane translocation of L2-BirA from incoming virions. We find that L2 translocation requires transport to the TGN and is strictly dependent on entry into mitosis, coinciding with mitotic entry in synchronized cells. Cell cycle arrest causes retention of L2/vDNA at the TGN; only release and progression past G2/M enables translocation across the limiting membrane and subsequent infection. Microscopy of EdU-labeled vDNA reveals a rapid and dramatic shift in vDNA localization during early mitosis. At late G2/early prophase vDNA egresses from the TGN to a pericentriolar location, accumulating there through prometaphase where it begins to associate with condensed chromosomes. By metaphase and throughout anaphase the vDNA is seen bound to the mitotic chromosomes, ensuring distribution into both daughter nuclei. Mutations in a newly defined chromatin binding region of L2 potently blocked translocation, suggesting that translocation is dependent on chromatin binding during prometaphase. This represents the first time a virus has been shown to functionally couple the penetration of limiting membranes to cellular mitosis, explaining in part the tropism of HPV for mitotic basal keratinocytes.


Assuntos
Proteínas do Capsídeo/metabolismo , Genoma Viral/genética , Papillomavirus Humano 16/fisiologia , Mitose , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/virologia , Transporte Biológico , Proteínas do Capsídeo/genética , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Núcleo Celular/metabolismo , Núcleo Celular/virologia , DNA Viral/genética , DNA Viral/metabolismo , Endossomos/metabolismo , Endossomos/virologia , Papillomavirus Humano 16/genética , Humanos , Queratinócitos/virologia , Mutação , Proteínas Oncogênicas Virais/genética , Tropismo Viral , Vírion , Internalização do Vírus , Rede trans-Golgi/metabolismo , Rede trans-Golgi/virologia
5.
Structure ; 24(4): 537-546, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26996960

RESUMO

Chaperonins are ubiquitous, ATP-dependent protein-folding molecular machines that are essential for all forms of life. Bacteriophage φEL encodes its own chaperonin to presumably fold exceedingly large viral proteins via profoundly different nucleotide-binding conformations. Our structural investigations indicate that ATP likely binds to both rings simultaneously and that a misfolded substrate acts as the trigger for ATP hydrolysis. More importantly, the φEL complex dissociates into two single rings resulting from an evolutionarily altered residue in the highly conserved ATP-binding pocket. Conformational changes also more than double the volume of the single-ring internal chamber such that larger viral proteins are accommodated. This is illustrated by the fact that φEL is capable of folding ß-galactosidase, a 116-kDa protein. Collectively, the architecture and protein-folding mechanism of the φEL chaperonin are significantly different from those observed in group I and II chaperonins.


Assuntos
Trifosfato de Adenosina/metabolismo , Bacteriófagos/metabolismo , Chaperoninas/química , Chaperoninas/metabolismo , Trifosfato de Adenosina/química , Bacteriófagos/química , Bacteriófagos/genética , Sítios de Ligação , Chaperoninas/genética , Hidrólise , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , beta-Galactosidase/química
6.
Oncotarget ; 2(1-2): 43-58, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21378414

RESUMO

The regulation of steroidogenic hormone receptor-mediated activity plays an important role in the development of hormone-dependent cancers. For example, during prostate carcinogenesis, the regulatory function played by the androgen receptor is often converted from a growth suppressor to an oncogene thus promoting prostate cancer cell survival and eventual metastasis. Within the cytoplasm, steroid hormone receptor activity is regulated by the Hsp90 chaperone in conjunction with a series of co-chaperone proteins. Collectively, Hsp90 and its binding associates form a large heteromeric complex that scaffold the fully mature receptor for binding with the respective hormone. To date our understanding of the interactions between Hsp90 with the various TPR domain-containing co-chaperone proteins is limited due to a lack of available structural information. Here we present the stable formation of Hsp90(2)-FKBP52(1)- HOP(2) and Hsp90(2)-FKBP52(1)-p23(2)-HOP(2) complexes as detected by immunoprecipitation, time course dynamic light scattering and electron microscopy. The simultaneous binding of FKBP52 and HOP to the Hsp90 dimer provide direct evidence of a novel chaperone sub-complex that likely plays a transient role in the regulation of the fully mature steroid hormone receptor.


Assuntos
Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/metabolismo , Proteínas de Ligação a Tacrolimo/química , Proteínas de Ligação a Tacrolimo/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Dimerização , Proteínas de Choque Térmico HSP90/isolamento & purificação , Proteínas de Homeodomínio/isolamento & purificação , Humanos , Imunoprecipitação , Luz , Ligação Proteica , Espalhamento de Radiação , Proteínas de Ligação a Tacrolimo/isolamento & purificação , Proteínas Supressoras de Tumor/isolamento & purificação
7.
J Chromatogr B Analyt Technol Biomed Life Sci ; 878(28): 2760-4, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20829124

RESUMO

Hsp90 is a ubiquitous molecular chaperone that plays a key role in the malignant development of hormone-dependent pathologies such as cancer. An important role for Hsp90 is to facilitate the stable binding of steroid hormones to their respective receptors enabling the ligand-based signal to be carried to the nucleus and ultimately resulting in the up-regulation of gene expression. Along with Hsp90, this dynamic and transient process also involves the recruitment of additional proteins and co-chaperones that add further stability to the mature receptor-chaperone complex. In the work presented here, we describe four new protocols for the bacterial over-expression and column chromatographic purification of the human p23, FKBP52, HOP and SGTα proteins. Each of these proteins plays a distinct role in the steroid hormone receptor regulatory cycle. Affinity, ion-exchange and size-exclusion techniques were used to produce target yields greater than 50mg/L of cultured media, with each purified sample reaching near absolute sample homogeneity. These results reveal a reliable system for the production of p23, FKBP52, HOP and SGTα substrate proteins for use in the investigation of the Hsp90-associated protein interactions of the steroid hormone receptor cycle.


Assuntos
Proteínas de Transporte/isolamento & purificação , Cromatografia Líquida/métodos , Proteínas de Choque Térmico/isolamento & purificação , Oxirredutases Intramoleculares/isolamento & purificação , Proteínas de Ligação a Tacrolimo/isolamento & purificação , Proteínas de Transporte/metabolismo , Escherichia coli , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico/metabolismo , Humanos , Oxirredutases Intramoleculares/metabolismo , Modelos Lineares , Chaperonas Moleculares , Prostaglandina-E Sintases , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA