Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(3): 105687, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280430

RESUMO

HIV-1 Gag protein is synthesized in the cytosol and is transported to the plasma membrane, where viral particle assembly and budding occur. Endosomes are alternative sites of Gag accumulation. However, the intracellular transport pathways and carriers for Gag have not been clarified. We show here that Syntaxin6 (Syx6), a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) involved in membrane fusion in post-Golgi networks, is a molecule responsible for Gag trafficking and also for tumor necrosis factor-α (TNFα) secretion and that Gag and TNFα are cotransported via Syx6-positive compartments/vesicles. Confocal and live-cell imaging revealed that Gag colocalized and cotrafficked with Syx6, a fraction of which localizes in early and recycling endosomes. Syx6 knockdown reduced HIV-1 particle production, with Gag distributed diffusely throughout the cytoplasm. Coimmunoprecipitation and pulldown show that Gag binds to Syx6, but not its SNARE partners or their assembly complexes, suggesting that Gag preferentially binds free Syx6. The Gag matrix domain and the Syx6 SNARE domain are responsible for the interaction and cotrafficking. In immune cells, Syx6 knockdown/knockout similarly impaired HIV-1 production. Interestingly, HIV-1 infection facilitated TNFα secretion, and this enhancement did not occur in Syx6-depleted cells. Confocal and live-cell imaging revealed that TNFα and Gag partially colocalized and were cotransported via Syx6-positive compartments/vesicles. Biochemical analyses indicate that TNFα directly binds the C-terminal domain of Syx6. Altogether, our data provide evidence that both Gag and TNFα make use of Syx6-mediated trafficking machinery and suggest that Gag expression does not inhibit but rather facilitates TNFα secretion in HIV-1 infection.


Assuntos
HIV-1 , Proteínas Qa-SNARE , Vesículas Transportadoras , Fator de Necrose Tumoral alfa , Produtos do Gene gag do Vírus da Imunodeficiência Humana , Endossomos/metabolismo , HIV-1/genética , HIV-1/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Transporte Proteico/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Ligação Proteica , Domínios Proteicos , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Humanos , Linhagem Celular , Vesículas Transportadoras/metabolismo , Replicação Viral/genética
2.
PLoS One ; 11(2): e0148387, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26828590

RESUMO

BteA is one of the effectors secreted from the Bordetella bronchiseptica type III secretion system. It has been reported that BteA induces necrosis in mammalian cells; however, the roles of BteA during the infection process are largely unknown. In order to investigate the BteA functions, morphological changes of the cells infected with the wild-type B. bronchiseptica were examined by time-lapse microscopy. L2 cells, a rat lung epithelial cell line, spread at 1.6 hours after B. bronchiseptica infection. Membrane ruffles were observed at peripheral parts of infected cells during the cell spreading. BteA-dependent cytotoxicity and cell detachment were inhibited by addition of cytochalasin D, an actin polymerization inhibitor. Domain analyses of BteA suggested that two separate amino acid regions, 200-312 and 400-658, were required for the necrosis induction. In order to examine the intra/intermolecular interactions of BteA, the amino- and the carboxyl-terminal moieties were purified as recombinant proteins from Escherichia coli. The amino-terminal moiety of BteA appeared to interact with the carboxyl-terminal moiety in the pull-down assay in vitro. When we measured the amounts of bacteria phagocytosed by J774A.1, a macrophage-like cell line, the phagocytosed amounts of B. bronchiseptica strains that deliver BteA into the host cell cytoplasm were significantly lower than those of strains that lost the ability to translocate BteA into the host cell cytoplasm. These results suggest that B. bronchiseptica induce necrosis by exploiting the actin polymerization signaling pathway and inhibit macrophage phagocytosis.


Assuntos
Citoesqueleto de Actina/metabolismo , Sistemas de Secreção Bacterianos , Bordetella bronchiseptica/fisiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Fagocitose , Transdução de Sinais , Citoesqueleto de Actina/efeitos dos fármacos , Aminoácidos/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/efeitos dos fármacos , Células COS , Forma Celular/efeitos dos fármacos , Chlorocebus aethiops , Citocalasina B/farmacologia , Endocitose/efeitos dos fármacos , Gentamicinas/farmacologia , L-Lactato Desidrogenase/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Proteínas Mutantes/metabolismo , Necrose , Fagócitos/metabolismo , Fagócitos/microbiologia , Fagocitose/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Ratos , Transdução de Sinais/efeitos dos fármacos , Imagem com Lapso de Tempo
3.
J Virol ; 88(17): 10039-55, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24965459

RESUMO

UNLABELLED: In polarized epithelial cells, influenza A virus hemagglutinin (HA) and neuraminidase (NA) are intrinsically associated with lipid rafts and target the apical plasma membrane for viral assembly and budding. Previous studies have indicated that the transmembrane domain (TMD) and cytoplasmic tail (CT) of HA and NA are required for association with lipid rafts, but the raft dependencies of their apical targeting are controversial. Here, we show that coexpression of HA with NA accelerated their apical targeting through accumulation in lipid rafts. HA was targeted to the apical plasma membrane even when expressed alone, but the kinetics was much slower than that of HA in infected cells. Coexpression experiments revealed that apical targeting of HA and NA was accelerated by their coexpression. The apical targeting of HA was also accelerated by coexpression with M1 but not M2. The mutations in the outer leaflet of the TMD and the deletion of the CT in HA and NA that reduced their association with lipid rafts abolished the acceleration of their apical transport, indicating that the lipid raft association is essential for efficient apical trafficking of HA and NA. An in situ proximity ligation assay (PLA) revealed that HA and NA were accumulated and clustered in the cytoplasmic compartments only when both were associated with lipid rafts. Analysis with mutant viruses containing nonraft HA/NA confirmed these findings. We further analyzed lipid raft markers by in situ PLA and suggest a possible mechanism of the accelerated apical transport of HA and NA via clustering of lipid rafts. IMPORTANCE: Lipid rafts serve as sites for viral entry, particle assembly, and budding, leading to efficient viral replication. The influenza A virus utilizes lipid rafts for apical plasma membrane targeting and particle budding. The hemagglutinin (HA) and neuraminidase (NA) of influenza virus, key players for particle assembly, contain determinants for apical sorting and lipid raft association. However, it remains to be elucidated how lipid rafts contribute to the apical trafficking and budding. We investigated the relation of lipid raft association of HA and NA to the efficiency of apical trafficking. We show that coexpression of HA and NA induces their accumulation in lipid rafts and accelerates their apical targeting, and we suggest that the accelerated apical transport likely occurs by clustering of lipid rafts at the TGN. This finding provides the first evidence that two different raft-associated viral proteins induce lipid raft clustering, thereby accelerating apical trafficking of the viral proteins.


Assuntos
Células Epiteliais/metabolismo , Células Epiteliais/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A/fisiologia , Microdomínios da Membrana/metabolismo , Neuraminidase/metabolismo , Proteínas Virais/metabolismo , Liberação de Vírus , Animais , Linhagem Celular , Análise Mutacional de DNA , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Neuraminidase/genética , Ligação Proteica , Transporte Proteico , Proteínas Virais/genética
4.
J Virol ; 85(13): 6197-204, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21507964

RESUMO

The influenza virus RNA-dependent RNA polymerase is capable of initiating replication but mainly catalyzes abortive RNA synthesis in the absence of viral and host regulatory factors. Previously, we reported that IREF-1/minichromosome maintenance (MCM) complex stimulates a de novo initiated replication reaction by stabilizing an initiated replication complex through scaffolding between the viral polymerase and nascent cRNA to which MCM binds. In addition, several lines of genetic and biochemical evidence suggest that viral nucleoprotein (NP) is involved in successful replication. Here, using cell-free systems, we have shown the precise stimulatory mechanism of virus genome replication by NP. Stepwise cell-free replication reactions revealed that exogenously added NP free of RNA activates the viral polymerase during promoter escape while it is incapable of encapsidating the nascent cRNA. However, we found that a previously identified cellular protein, RAF-2p48/NPI-5/UAP56, facilitates replication reaction-coupled encapsidation as an NP molecular chaperone. These findings demonstrate that replication of the virus genome is followed by its encapsidation by NP in collaboration with its chaperone.


Assuntos
Capsídeo/metabolismo , RNA Helicases DEAD-box/metabolismo , Regulação Viral da Expressão Gênica , Vírus da Influenza A/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas do Core Viral/metabolismo , Replicação Viral , Sistema Livre de Células/metabolismo , RNA Helicases DEAD-box/genética , Genoma Viral , Células HeLa , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/fisiologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas do Nucleocapsídeo , RNA Viral/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas do Core Viral/genética
5.
Microbiol Immunol ; 54(12): 734-46, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21091985

RESUMO

Human immunodeficiency virus (HIV) Gag precursor protein is cleaved by viral protease (PR) within GagPol precursor protein to produce the mature matrix (MA), capsid, nucleocapsid, and p6 domains. This processing is termed maturation and required for HIV infectivity. In order to understand the intracellular sites and mechanisms of HIV maturation, HIV molecular clones in which Gag and GagPol were tagged with FLAG and hemagglutinin epitope sequences at the C-termini, respectively were made. When coexpressed, both Gag and GagPol were incorporated into virus particles. Temporal analysis by confocal microscopy showed that Gag and GagPol were relocated from the cytoplasm to the plasma membrane. Mature cleaved MA was observed only at sites on the plasma membrane where both Gag and GagPol had accumulated, indicating that Gag processing occurs during Gag/GagPol assembly at the plasma membrane, but not during membrane trafficking. Fluorescence resonance energy transfer imaging suggested that these were the primary sites of GagPol dimerization. In contrast, with overexpression of GagPol alone an absence of particle release was observed, and this was associated with diffuse distribution of mature cleaved MA throughout the cytoplasm. Alteration of the Gag-to-GagPol ratio similarly impaired virus particle release with aberrant distributions of mature MA in the cytoplasm. However, when PR was inactive, it seemed that the Gag-to-GagPol ratio was not critical for virus particle release but virus particles encasing unusually large numbers of GagPol molecules were produced, these particles displaying aberrant virion morphology. Taken together, it was concluded that the Gag-to-GagPol ratio has significant impacts on either intracellular distributions of mature cleaved MA or the morphology of virus particles produced.


Assuntos
Proteínas de Fusão gag-pol/análise , Produtos do Gene gag/análise , HIV-1/fisiologia , Vírion/fisiologia , Liberação de Vírus , Membrana Celular/química , Proteínas de Fusão gag-pol/química , Proteínas de Fusão gag-pol/metabolismo , Células HeLa , Humanos , Multimerização Proteica , Precursores de Proteínas/metabolismo
6.
Microbes Infect ; 9(12-13): 1422-33, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17905627

RESUMO

We developed a unique monoclonal antibody, mAb61A5, using the nucleoprotein (NP) of influenza virus A/Puerto Rico/8/34 (PR8) strain. Truncation and alanine substitution experiments showed that mAb61A5 recognized the NP fragment with residues 17 to 123 in which a conformational epitope formed by the beta1 sheet and the linker region between the alpha1 and alpha2 helices. Variations in the epitope or nearby can partly account for the poor mAb61A5 reactivity with the NP of A/Aichi/2/68 or A/duck/Pennsylvania/10128/84 strains. Interestingly, immunoprecipitation analysis revealed that mAb61A5 preferentially interacted with viral ribonucleoprotein complexes, composed of RNA polymerase, negative/positive sense RNA and NP, rather than exogenously added NP. Immunofluorescence microscopy using mAb61A5 showed a punctate staining in the cytoplasm during the late phase of infection. The punctate NPs accumulated at the microtubule organizing center and co-localized with microtubules. The treatment with leptomycin B to block a CRM1-dependent nuclear export failed to produce the punctate NP. The treatment with nocodazole, a microtubule-depolymerizing agent, showed random distribution of the punctate NP in the cytoplasm. These results suggest that microtubule networks, although were not required for the formation of punctate structures, were responsible for the polarized distribution of the punctate NP antigens, most likely viral progeny ribonucleoprotein complexes.


Assuntos
Anticorpos Monoclonais/imunologia , Vírus da Influenza A/metabolismo , Microtúbulos/metabolismo , Nucleoproteínas/imunologia , Proteínas de Ligação a RNA/imunologia , Ribonucleoproteínas/metabolismo , Proteínas do Core Viral/imunologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Especificidade de Anticorpos , Linhagem Celular , Mapeamento de Epitopos , Feminino , Humanos , Imunoprecipitação , Vírus da Influenza A/genética , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Modelos Moleculares , Dados de Sequência Molecular , Nocodazol/farmacologia , Proteínas do Nucleocapsídeo , Nucleoproteínas/química , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas do Core Viral/química , Proteínas do Core Viral/genética , Proteínas do Core Viral/metabolismo
7.
J Virol ; 81(18): 9911-21, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17609278

RESUMO

We have previously shown that the expression of human immunodeficiency virus type 1 (HIV-1) Gag protein in Saccharomyces cerevisiae spheroplasts produces Gag virus-like particles (VLPs) at the plasma membrane, indicating that yeast has all the host factors necessary for HIV-1 Gag assembly. Here we expand the study by using diverse primate lentiviral Gags and show that yeast does not support the production of HIV-2 or simian immunodeficiency virus SIVmac Gag VLPs but allows the production of SIVagm and SIVmnd Gag VLPs. Particle budding was observed at the surfaces of cells expressing SIVagm and SIVmnd Gags, but cells expressing HIV-2 and SIVmac Gags showed only membrane-ruffling structures, although they were accompanied with electron-dense submembrane layers, suggesting arrest at an early stage of particle budding. Comparison of HIV-1 and HIV-2 Gag expression revealed broadly equivalent levels of intracellular Gag expression and Gag N-terminal myristoylation in yeast. Both Gags showed the same membrane-binding ability and were incorporated into lipid raft fractions at a physiological concentration of salt. HIV-2 Gag, however, failed to form a high-order multimer and easily dissociated from the membrane, phenomena which were not observed in higher eukaryotic cells. A series of chimeric Gags between HIV-1 and HIV-2 and Gag mutants with amino acid substitutions revealed that a defined region in helix 2 of HIV-2 MA (located on the membrane-binding surface of MA) affects higher-order Gag assembly and particle production in yeast. Together, these data suggest that yeast may lack a host factor(s) for HIV-2 and SIVmac Gag assembly.


Assuntos
Produtos do Gene gag/metabolismo , HIV-1/metabolismo , HIV-2/metabolismo , Saccharomyces cerevisiae/metabolismo , Esferoplastos/metabolismo , Montagem de Vírus , Substituição de Aminoácidos , Expressão Gênica , Produtos do Gene gag/genética , HIV-1/genética , HIV-1/ultraestrutura , HIV-2/genética , HIV-2/ultraestrutura , Humanos , Microdomínios da Membrana/genética , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/ultraestrutura , Mutação de Sentido Incorreto , Ácido Mirístico/metabolismo , Ligação Proteica/genética , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Saccharomyces cerevisiae/virologia , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/metabolismo , Esferoplastos/genética , Esferoplastos/ultraestrutura
8.
J Biol Chem ; 279(30): 31964-72, 2004 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-15152006

RESUMO

Human immunodeficiency virus Gag protein self-assembles into spherical particles, and recent reports suggest the formation of assembly intermediates during the process. To understand the nature of such assembly intermediates along with the mechanism of Gag assembly, we employed expression in Escherichia coli and an in vitro assembly reaction. When E. coli expression was performed at 37 degrees C, Gag predominantly assembled to a high order of multimer, apparently equivalent to the virus-like particles obtained following Gag expression in eukaryotic cells, through the formation of low orders of multimer characterized with a discreet sedimentation value of 60 S. Electron microscopy confirmed the presence of spherical particles in the E. coli cells. In contrast, expression at 30 degrees C resulted in the production of only the 60 S form of Gag multimer, and crescent-shaped structures or small patches with double electron-dense layers were accumulated, but no complete particles. In vitro assembly reactions using purified Gag protein, when performed at 37 degrees C, also produced the high order of Gag multimers with some 60 S multimers, whereas the 30 degrees C reaction produced only the 60 S multimers. However, when the 60 S multimers were cross-linked so as not to allow conformational changes, in vitro assembly reactions at 37 degrees C did not produce any higher order of multimers. ATP depletion did not halt Gag assembly in the E. coli cells, and the addition of GroEL-GroES to in vitro reactions did not facilitate Gag assembly, indicating that conformational changes rather than protein refolding by chaperonins, induced at 37 degrees C, were solely responsible for the Gag assembly observed here. We suggest that Gag assembles to a capsid through the formation of the 60 S multimer, possibly a key intermediate of the assembly process, accompanied with conformational changes in Gag.


Assuntos
Produtos do Gene gag/biossíntese , HIV-1/metabolismo , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Produtos do Gene gag/química , Produtos do Gene gag/genética , Genes gag , HIV-1/genética , HIV-1/fisiologia , Técnicas In Vitro , Substâncias Macromoleculares , Microscopia Eletrônica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Montagem de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA