Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12811, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834738

RESUMO

Macrophages provide a crucial environment for Salmonella enterica serovar Typhi (S. Typhi) to multiply during typhoid fever, yet our understanding of how human macrophages and S. Typhi interact remains limited. In this study, we delve into the dynamics of S. Typhi replication within human macrophages and the resulting heterogeneous transcriptomic responses of macrophages during infection. Our study reveals key factors that influence macrophage diversity, uncovering distinct immune and metabolic pathways associated with different stages of S. Typhi intracellular replication in macrophages. Of note, we found that macrophages harboring replicating S. Typhi are skewed towards an M1 pro-inflammatory state, whereas macrophages containing non-replicating S. Typhi exhibit neither a distinct M1 pro-inflammatory nor M2 anti-inflammatory state. Additionally, macrophages with replicating S. Typhi were characterized by the increased expression of genes associated with STAT3 phosphorylation and the activation of the STAT3 transcription factor. Our results shed light on transcriptomic pathways involved in the susceptibility of human macrophages to intracellular S. Typhi replication, thereby providing crucial insight into host phenotypes that restrict and support S. Typhi infection.


Assuntos
Macrófagos , Fator de Transcrição STAT3 , Salmonella typhi , Febre Tifoide , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Salmonella typhi/genética , Febre Tifoide/microbiologia , Febre Tifoide/imunologia , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Perfilação da Expressão Gênica , Fenótipo , Transcriptoma , Fosforilação
2.
Curr Opin Immunol ; 84: 102367, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37437470

RESUMO

Macrophages function as tissue-immune sentinels and mediate key antimicrobial responses against bacterial pathogens. Yet, they can also act as a cellular niche for intracellular bacteria, such as Salmonella enterica, to persist in infected tissues. Macrophages exhibit heterogeneous activation or polarization, states that are linked to differential antibacterial responses and bacteria permissiveness. Remarkably, recent studies demonstrate that Salmonella and other intracellular bacteria inject virulence effectors into the cellular cytoplasm to skew the macrophage polarization state and reprogram these immune cells into a permissive niche. Here, we review mechanisms of macrophage reprogramming by Salmonella and highlight manipulation of macrophage polarization as a shared bacterial pathogenesis strategy. In addition, we discuss how the interplay of bacterial effector mechanisms, microenvironmental signals, and ontogeny may shape macrophage cell states and functions. Finally, we propose ideas of how further research will advance our understanding of macrophage functional diversity and immunobiology.


Assuntos
Bactérias , Macrófagos , Humanos , Virulência
3.
mBio ; 14(4): e0113723, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37341487

RESUMO

Salmonella enterica serovar Typhi (S. Typhi) is a human-restricted pathogen that replicates in macrophages. In this study, we investigated the roles of the S. Typhi type 3 secretion systems (T3SSs) encoded on Salmonella pathogenicity islands (SPI)-1 (T3SS-1) and SPI-2 (T3SS-2) during human macrophage infection. We found that mutants of S. Typhi deficient for both T3SSs were defective for intramacrophage replication as measured by flow cytometry, viable bacterial counts, and live time-lapse microscopy. T3SS-secreted proteins PipB2 and SifA contributed to S. Typhi replication and were translocated into the cytosol of human macrophages through both T3SS-1 and T3SS-2, demonstrating functional redundancy for these secretion systems. Importantly, an S. Typhi mutant strain that is deficient for both T3SS-1 and T3SS-2 was severely attenuated in the ability to colonize systemic tissues in a humanized mouse model of typhoid fever. Overall, this study establishes a critical role for S. Typhi T3SSs during its replication within human macrophages and during systemic infection of humanized mice. IMPORTANCE Salmonella enterica serovar Typhi is a human-restricted pathogen that causes typhoid fever. Understanding the key virulence mechanisms that facilitate S. Typhi replication in human phagocytes will enable rational vaccine and antibiotic development to limit the spread of this pathogen. While S. Typhimurium replication in murine models has been studied extensively, there is limited information available about S. Typhi replication in human macrophages, some of which directly conflict with findings from S. Typhimurium murine models. This study establishes that both of S. Typhi's two type 3 secretion systems (T3SS-1 and T3SS-2) contribute to intramacrophage replication and virulence.


Assuntos
Salmonella typhi , Febre Tifoide , Humanos , Animais , Camundongos , Salmonella typhi/genética , Febre Tifoide/microbiologia , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Salmonella/metabolismo , Macrófagos/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
4.
Sci Adv ; 9(1): eadd4333, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36608122

RESUMO

Macrophages mediate key antimicrobial responses against intracellular bacterial pathogens, such as Salmonella enterica. Yet, they can also act as a permissive niche for these pathogens to persist in infected tissues within granulomas, which are immunological structures composed of macrophages and other immune cells. We apply single-cell transcriptomics to investigate macrophage functional diversity during persistent S. enterica serovar Typhimurium (STm) infection in mice. We identify determinants of macrophage heterogeneity in infected spleens and describe populations of distinct phenotypes, functional programming, and spatial localization. Using an STm mutant with impaired ability to polarize macrophage phenotypes, we find that angiotensin-converting enzyme (ACE) defines a granuloma macrophage population that is nonpermissive for intracellular bacteria, and their abundance anticorrelates with tissue bacterial burden. Disruption of pathogen control by neutralizing TNF is linked to preferential depletion of ACE+ macrophages in infected tissues. Thus, ACE+ macrophages have limited capacity to serve as cellular niche for intracellular bacteria to establish persistent infection.


Assuntos
Infecções por Salmonella , Salmonella typhimurium , Animais , Camundongos , Salmonella typhimurium/genética , Infecção Persistente , Infecções por Salmonella/genética , Macrófagos/microbiologia , Granuloma
5.
Nat Protoc ; 16(11): 5171-5192, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34663962

RESUMO

Human epithelial organoids-3D spheroids derived from adult tissue stem cells-enable investigation of epithelial physiology and disease and host interactions with microorganisms, viruses and bioactive molecules. One challenge in using organoids is the difficulty in accessing the apical, or luminal, surface of the epithelium, which is enclosed within the organoid interior. This protocol describes a method we previously developed to control human and mouse organoid polarity in suspension culture such that the apical surface faces outward to the medium (apical-out organoids). Our protocol establishes apical-out polarity rapidly (24-48 h), preserves epithelial integrity, maintains secretory and absorptive functions and allows regulation of differentiation. Here, we provide a detailed description of the organoid polarity reversal method, compatible characterization assays and an example of an application of the technology-specifically the impact of host-microbe interactions on epithelial function. Control of organoid polarity expands the possibilities of organoid use in gastrointestinal and respiratory health and disease research.


Assuntos
Diferenciação Celular , Trato Gastrointestinal , Organoides , Animais , Técnicas de Cultura de Células , Células Epiteliais/citologia , Camundongos
6.
PLoS Pathog ; 16(8): e1008763, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32834002

RESUMO

The various sub-species of Salmonella enterica cause a range of disease in human hosts. The human-adapted Salmonella enterica serovar Typhi enters the gastrointestinal tract and invades systemic sites to cause enteric (typhoid) fever. In contrast, most non-typhoidal serovars of Salmonella are primarily restricted to gut tissues. Across Africa, invasive non-typhoidal Salmonella (iNTS) have emerged with an ability to spread beyond the gastrointestinal tract and cause systemic bloodstream infections with increased morbidity and mortality. To investigate this evolution in pathogenesis, we compared the genomes of African iNTS isolates with other Salmonella enterica serovar Typhimurium and identified several macA and macB gene variants unique to African iNTS. MacAB forms a tripartite efflux pump with TolC and is implicated in Salmonella pathogenesis. We show that macAB transcription is upregulated during macrophage infection and after antimicrobial peptide exposure, with macAB transcription being supported by the PhoP/Q two-component system. Constitutive expression of macAB improves survival of Salmonella in the presence of the antimicrobial peptide C18G. Furthermore, these macAB variants affect replication in macrophages and influence fitness during colonization of the murine gastrointestinal tract. Importantly, the infection outcome resulting from these macAB variants depends upon both the Salmonella Typhimurium genetic background and the host gene Nramp1, an important determinant of innate resistance to intracellular bacterial infection. The variations we have identified in the MacAB-TolC efflux pump in African iNTS may reflect evolution within human host populations that are compromised in their ability to clear intracellular Salmonella infections.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , Colite/patologia , Variação Genética , Macrófagos/imunologia , Salmonelose Animal/patologia , Salmonella typhimurium/imunologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Linhagem da Célula , Colite/induzido quimicamente , Colite/imunologia , Colite/microbiologia , Análise Mutacional de DNA , Modelos Animais de Doenças , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Salmonelose Animal/imunologia , Salmonelose Animal/microbiologia , Replicação Viral
7.
mBio ; 11(3)2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576678

RESUMO

It is well understood that the adaptive immune response to infectious agents includes a modulating suppressive component as well as an activating component. We now show that the very early innate response also has an immunosuppressive component. Infected cells upregulate the CD47 "don't eat me" signal, which slows the phagocytic uptake of dying and viable cells as well as downstream antigen-presenting cell (APC) functions. A CD47 mimic that acts as an essential virulence factor is encoded by all poxviruses, but CD47 expression on infected cells was found to be upregulated even by pathogens, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), that encode no mimic. CD47 upregulation was revealed to be a host response induced by the stimulation of both endosomal and cytosolic pathogen recognition receptors (PRRs). Furthermore, proinflammatory cytokines, including those found in the plasma of hepatitis C patients, upregulated CD47 on uninfected dendritic cells, thereby linking innate modulation with downstream adaptive immune responses. Indeed, results from antibody-mediated CD47 blockade experiments as well as CD47 knockout mice revealed an immunosuppressive role for CD47 during infections with lymphocytic choriomeningitis virus and Mycobacterium tuberculosis Since CD47 blockade operates at the level of pattern recognition receptors rather than at a pathogen or antigen-specific level, these findings identify CD47 as a novel potential immunotherapeutic target for the enhancement of immune responses to a broad range of infectious agents.IMPORTANCE Immune responses to infectious agents are initiated when a pathogen or its components bind to pattern recognition receptors (PRRs). PRR binding sets off a cascade of events that activates immune responses. We now show that, in addition to activating immune responses, PRR signaling also initiates an immunosuppressive response, probably to limit inflammation. The importance of the current findings is that blockade of immunomodulatory signaling, which is mediated by the upregulation of the CD47 molecule, can lead to enhanced immune responses to any pathogen that triggers PRR signaling. Since most or all pathogens trigger PRRs, CD47 blockade could be used to speed up and strengthen both innate and adaptive immune responses when medically indicated. Such immunotherapy could be done without a requirement for knowing the HLA type of the individual, the specific antigens of the pathogen, or, in the case of bacterial infections, the antimicrobial resistance profile.


Assuntos
Betacoronavirus/imunologia , Antígeno CD47/metabolismo , Imunomodulação/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Células A549 , Imunidade Adaptativa/imunologia , Animais , Antígeno CD47/genética , Linhagem Celular Tumoral , Citocinas/imunologia , Feminino , Humanos , Imunidade Inata/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium tuberculosis/imunologia , SARS-CoV-2 , Regulação para Cima/imunologia
8.
Gastroenterology ; 159(1): 214-226.e1, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32247021

RESUMO

BACKGROUND & AIMS: Intestinal microfold (M) cells are a unique subset of intestinal epithelial cells in the Peyer's patches that regulate mucosal immunity, serving as portals for sampling and uptake of luminal antigens. The inability to efficiently develop human M cells in cell culture has impeded studies of the intestinal immune system. We aimed to identify signaling pathways required for differentiation of human M cells and establish a robust culture system using human ileum enteroids. METHODS: We analyzed transcriptome data from mouse Peyer's patches to identify cell populations in close proximity to M cells. We used the human enteroid system to determine which cytokines were required to induce M-cell differentiation. We performed transcriptome, immunofluorescence, scanning electron microscope, and transcytosis experiments to validate the development of phenotypic and functional human M cells. RESULTS: A combination of retinoic acid and lymphotoxin induced differentiation of glycoprotein 2-positive human M cells, which lack apical microvilli structure. Upregulated expression of innate immune-related genes within M cells correlated with a lack of viral antigens after rotavirus infection. Human M cells, developed in the enteroid system, internalized and transported enteric viruses, such as rotavirus and reovirus, across the intestinal epithelium barrier in the enteroids. CONCLUSIONS: We identified signaling pathways required for differentiation of intestinal M cells, and used this information to create a robust culture method to develop human M cells with capacity for internalization and transport of viruses. Studies of this model might increase our understanding of antigen presentation and the systemic entry of enteric pathogens in the human intestine.


Assuntos
Diferenciação Celular/imunologia , Linfotoxina-alfa/metabolismo , Nódulos Linfáticos Agregados/imunologia , Transdução de Sinais/imunologia , Tretinoína/metabolismo , Animais , Apresentação de Antígeno/imunologia , Técnicas de Cultura de Células/métodos , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Humanos , Íleo/citologia , Íleo/imunologia , Imunidade nas Mucosas , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Camundongos , NF-kappa B/metabolismo , Organoides , Nódulos Linfáticos Agregados/citologia , Nódulos Linfáticos Agregados/metabolismo , Cultura Primária de Células , Proteínas Recombinantes/metabolismo
9.
Cell Host Microbe ; 27(1): 41-53.e6, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31862381

RESUMO

Many Gram-negative bacterial pathogens antagonize anti-bacterial immunity through translocated effector proteins that inhibit pro-inflammatory signaling. In addition, the intracellular pathogen Salmonella enterica serovar Typhimurium initiates an anti-inflammatory transcriptional response in macrophages through its effector protein SteE. However, the target(s) and molecular mechanism of SteE remain unknown. Here, we demonstrate that SteE converts both the amino acid and substrate specificity of the host pleiotropic serine/threonine kinase GSK3. SteE itself is a substrate of GSK3, and phosphorylation of SteE is required for its activity. Remarkably, phosphorylated SteE then forces GSK3 to phosphorylate the non-canonical substrate signal transducer and activator of transcription 3 (STAT3) on tyrosine-705. This results in STAT3 activation, which along with GSK3 is required for SteE-mediated upregulation of the anti-inflammatory M2 macrophage marker interleukin-4Rα (IL-4Rα). Overall, the conversion of GSK3 to a tyrosine-directed kinase represents a tightly regulated event that enables a bacterial virulence protein to reprogram innate immune signaling and establish an anti-inflammatory environment.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Macrófagos/microbiologia , Proteínas Serina-Treonina Quinases/metabolismo , Fator de Transcrição STAT3/metabolismo , Salmonella typhimurium , Animais , Proteínas de Bactérias/metabolismo , Células HEK293 , Células HeLa , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Interleucina-4/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Tirosina Quinases/metabolismo , Salmonella typhimurium/imunologia , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidade , Virulência/imunologia
10.
Cell Host Microbe ; 27(1): 54-67.e5, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31883922

RESUMO

Many intracellular bacteria can establish chronic infection and persist in tissues within granulomas composed of macrophages. Granuloma macrophages exhibit heterogeneous polarization states, or phenotypes, that may be functionally distinct. Here, we elucidate a host-pathogen interaction that controls granuloma macrophage polarization and long-term pathogen persistence during Salmonella Typhimurium (STm) infection. We show that STm persists within splenic granulomas that are densely populated by CD11b+CD11c+Ly6C+ macrophages. STm preferentially persists in granuloma macrophages reprogrammed to an M2 state, in part through the activity of the effector SteE, which contributes to the establishment of persistent infection. We demonstrate that tumor necrosis factor (TNF) signaling limits M2 granuloma macrophage polarization, thereby restricting STm persistence. TNF neutralization shifts granuloma macrophages toward an M2 state and increases bacterial persistence, and these effects are partially dependent on SteE activity. Thus, manipulating granuloma macrophage polarization represents a strategy for intracellular bacteria to overcome host restriction during persistent infection.


Assuntos
Granuloma/imunologia , Interações Hospedeiro-Patógeno/imunologia , Ativação de Macrófagos/imunologia , Infecções por Salmonella/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Granuloma/microbiologia , Humanos , Interleucina-4/metabolismo , Macrófagos/microbiologia , Camundongos , Salmonella typhimurium/imunologia , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidade , Baço/citologia , Baço/microbiologia , Baço/patologia , Transativadores/metabolismo , Fatores de Virulência/metabolismo
11.
Cell Rep ; 26(9): 2509-2520.e4, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30811997

RESUMO

Human enteroids-epithelial spheroids derived from primary gastrointestinal tissue-are a promising model to study pathogen-epithelial interactions. However, accessing the apical enteroid surface is challenging because it is enclosed within the spheroid. We developed a technique to reverse enteroid polarity such that the apical surface everts to face the media. Apical-out enteroids maintain proper polarity and barrier function, differentiate into the major intestinal epithelial cell (IEC) types, and exhibit polarized absorption of nutrients. We used this model to study host-pathogen interactions and identified distinct polarity-specific patterns of infection by invasive enteropathogens. Salmonella enterica serovar Typhimurium targets IEC apical surfaces for invasion via cytoskeletal rearrangements, and Listeria monocytogenes, which binds to basolateral receptors, invade apical surfaces at sites of cell extrusion. Despite different modes of entry, both pathogens exit the epithelium within apically extruding enteroid cells. This model will enable further examination of IECs in health and disease.


Assuntos
Células Epiteliais/citologia , Células Epiteliais/microbiologia , Interações Hospedeiro-Patógeno , Mucosa Intestinal/citologia , Técnicas de Cultura de Células , Diferenciação Celular , Polaridade Celular , Células Epiteliais/metabolismo , Ácidos Graxos/metabolismo , Humanos , Listeria monocytogenes/fisiologia , Modelos Biológicos , Salmonella typhimurium/fisiologia , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Esferoides Celulares/microbiologia
12.
PLoS Biol ; 17(1): e3000059, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30645593

RESUMO

Salmonella Typhimurium sequence type (ST) 313 causes invasive nontyphoidal Salmonella (iNTS) disease in sub-Saharan Africa, targeting susceptible HIV+, malarial, or malnourished individuals. An in-depth genomic comparison between the ST313 isolate D23580 and the well-characterized ST19 isolate 4/74 that causes gastroenteritis across the globe revealed extensive synteny. To understand how the 856 nucleotide variations generated phenotypic differences, we devised a large-scale experimental approach that involved the global gene expression analysis of strains D23580 and 4/74 grown in 16 infection-relevant growth conditions. Comparison of transcriptional patterns identified virulence and metabolic genes that were differentially expressed between D23580 versus 4/74, many of which were validated by proteomics. We also uncovered the S. Typhimurium D23580 and 4/74 genes that showed expression differences during infection of murine macrophages. Our comparative transcriptomic data are presented in a new enhanced version of the Salmonella expression compendium, SalComD23580: http://bioinf.gen.tcd.ie/cgi-bin/salcom_v2.pl. We discovered that the ablation of melibiose utilization was caused by three independent SNP mutations in D23580 that are shared across ST313 lineage 2, suggesting that the ability to catabolize this carbon source has been negatively selected during ST313 evolution. The data revealed a novel, to our knowledge, plasmid maintenance system involving a plasmid-encoded CysS cysteinyl-tRNA synthetase, highlighting the power of large-scale comparative multicondition analyses to pinpoint key phenotypic differences between bacterial pathovariants.


Assuntos
Infecções por Salmonella/genética , Salmonella typhimurium/genética , Animais , Gastroenterite/microbiologia , Perfilação da Expressão Gênica/métodos , Variação Genética/genética , Humanos , Macrófagos , Camundongos , Infecções por Salmonella/microbiologia , Virulência
13.
Nat Commun ; 9(1): 996, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29520027

RESUMO

Lipopolysaccharide (LPS) of Gram-negative bacteria can elicit a strong immune response. Although extracellular LPS is sensed by TLR4 at the cell surface and triggers a transcriptional response, cytosolic LPS binds and activates non-canonical inflammasome caspases, resulting in pyroptotic cell death, as well as canonical NLRP3 inflammasome-dependent cytokine release. Contrary to the highly regulated multiprotein platform required for caspase-1 activation in the canonical inflammasomes, the non-canonical mouse caspase-11 and the orthologous human caspase-4 function simultaneously as innate sensors and effectors, and their regulation is unclear. Here we show that the oxidized phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (oxPAPC) inhibits the non-canonical inflammasome in macrophages, but not in dendritic cells. Aside from a TLR4 antagonistic role, oxPAPC binds directly to caspase-4 and caspase-11, competes with LPS binding, and consequently inhibits LPS-induced pyroptosis, IL-1ß release and septic shock. Therefore, oxPAPC and its derivatives might provide a basis for therapies that target non-canonical inflammasomes during Gram-negative bacterial sepsis.


Assuntos
Anti-Inflamatórios/administração & dosagem , Inflamassomos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Fosfatidilcolinas/administração & dosagem , Choque Séptico/prevenção & controle , Animais , Caspases/genética , Caspases/imunologia , Caspases Iniciadoras , Células Cultivadas , Feminino , Humanos , Inflamassomos/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Choque Séptico/genética , Choque Séptico/imunologia
14.
Immunity ; 46(4): 522-524, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28423331

RESUMO

Within the gut, Salmonella-infected enterocytes are expelled into the lumen, limiting pathogen replication. In this issue of Immunity, Rauch et al. (2017) expand our understanding of this cell-intrinsic response by characterizing the genetic determinants that control the expulsion and death of epithelial cells.


Assuntos
Infecções por Salmonella/imunologia , Salmonella/imunologia , Enterócitos/imunologia , Células Epiteliais , Imunidade
15.
J Exp Med ; 213(11): 2365-2382, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27697835

RESUMO

Cell death and release of proinflammatory mediators contribute to mortality during sepsis. Specifically, caspase-11-dependent cell death contributes to pathology and decreases in survival time in sepsis models. Priming of the host cell, through TLR4 and interferon receptors, induces caspase-11 expression, and cytosolic LPS directly stimulates caspase-11 activation, promoting the release of proinflammatory cytokines through pyroptosis and caspase-1 activation. Using a CRISPR-Cas9-mediated genome-wide screen, we identified novel mediators of caspase-11-dependent cell death. We found a complement-related peptidase, carboxypeptidase B1 (Cpb1), to be required for caspase-11 gene expression and subsequent caspase-11-dependent cell death. Cpb1 modifies a cleavage product of C3, which binds to and activates C3aR, and then modulates innate immune signaling. We find the Cpb1-C3-C3aR pathway induces caspase-11 expression through amplification of MAPK activity downstream of TLR4 and Ifnar activation, and mediates severity of LPS-induced sepsis (endotoxemia) and disease outcome in mice. We show C3aR is required for up-regulation of caspase-11 orthologues, caspase-4 and -5, in primary human macrophages during inflammation and that c3aR1 and caspase-5 transcripts are highly expressed in patients with severe sepsis; thus, suggesting that these pathways are important in human sepsis. Our results highlight a novel role for complement and the Cpb1-C3-C3aR pathway in proinflammatory signaling, caspase-11 cell death, and sepsis severity.


Assuntos
Caspases/metabolismo , Proteínas do Sistema Complemento/metabolismo , Sepse/enzimologia , Sepse/patologia , Animais , Sistemas CRISPR-Cas , Carboxipeptidase B/metabolismo , Caspases Iniciadoras , Morte Celular , Complemento C3/metabolismo , Endotoxemia/sangue , Endotoxemia/patologia , Endotoxinas , Ativação Enzimática , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases , Macrófagos/enzimologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Modelos Biológicos , Fosforilação , Células RAW 264.7 , Receptores de Complemento/metabolismo , Receptores de Interferon/metabolismo , Salmonella/fisiologia , Shigella/fisiologia , Receptor 4 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Elife ; 5: e13663, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27011353

RESUMO

When innate immune cells such as macrophages are challenged with environmental stresses or infection by pathogens, they trigger the rapid assembly of multi-protein complexes called inflammasomes that are responsible for initiating pro-inflammatory responses and a form of cell death termed pyroptosis. We describe here the identification of an intracellular trigger of NLRP3-mediated inflammatory signaling, IL-1ß production and pyroptosis in primed murine bone marrow-derived macrophages that is mediated by the disruption of glycolytic flux. This signal results from a drop of NADH levels and induction of mitochondrial ROS production and can be rescued by addition of products that restore NADH production. This signal is also important for host-cell response to the intracellular pathogen Salmonella typhimurium, which can disrupt metabolism by uptake of host-cell glucose. These results reveal an important inflammatory signaling network used by immune cells to sense metabolic dysfunction or infection by intracellular pathogens.


Assuntos
Glicólise , Inflamassomos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Piroptose , Transdução de Sinais , Animais , Células Cultivadas , Interleucina-1beta/metabolismo , Camundongos , NAD/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Salmonella typhimurium/imunologia , Salmonella typhimurium/metabolismo
17.
J Immunol ; 195(3): 815-9, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26109648

RESUMO

Murine NLR family, apoptosis inhibitory protein (Naip)1, Naip2, and Naip5/6 are host sensors that detect the cytosolic presence of needle and rod proteins from bacterial type III secretion systems and flagellin, respectively. Previous studies using human-derived macrophage-like cell lines indicate that human macrophages sense the cytosolic needle protein, but not bacterial flagellin. In this study, we show that primary human macrophages readily sense cytosolic flagellin. Infection of primary human macrophages with Salmonella elicits robust cell death and IL-1ß secretion that is dependent on flagellin. We show that flagellin detection requires a full-length isoform of human Naip. This full-length Naip isoform is robustly expressed in primary macrophages from healthy human donors, but it is drastically reduced in monocytic tumor cells, THP-1, and U937, rendering them insensitive to cytosolic flagellin. However, ectopic expression of full-length Naip rescues the ability of U937 cells to sense flagellin. In conclusion, human Naip functions to activate the inflammasome in response to flagellin, similar to murine Naip5/6.


Assuntos
Sistemas de Secreção Bacterianos/imunologia , Flagelina/imunologia , Inflamassomos/imunologia , Macrófagos/imunologia , Proteína Inibidora de Apoptose Neuronal/imunologia , Células Cultivadas , Humanos , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Proteína Inibidora de Apoptose Neuronal/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Salmonella/imunologia , Infecções por Salmonella/imunologia , Células U937
18.
J Immunol ; 194(7): 3236-45, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25710914

RESUMO

Type I IFN production is an important host immune response against viral and bacterial infections. However, little is known about the ligands and corresponding host receptors that trigger type I IFN production during bacterial infections. We used a model intracellular pathogen, Francisella novicida, to begin characterizing the type I IFN response to bacterial pathogens. F. novicida replicates in the cytosol of host cells and elicits a robust type I IFN response that is largely TLR independent, but is dependent on the adapter molecule STING, suggesting that the type I IFN stimulus during F. novicida infection is cytosolic. In this study, we report that the cytosolic DNA sensors, cyclic GMP-AMP synthase (cGAS) and Ifi204, are both required for the STING-dependent type I IFN response to F. novicida infection in both primary and immortalized murine macrophages. We created cGAS, Ifi204, and Sting functional knockouts in RAW264.7 macrophages and demonstrated that cGAS and Ifi204 cooperate to sense dsDNA and activate the STING-dependent type I IFN pathway. In addition, we show that dsDNA from F. novicida is an important type I IFN stimulating ligand. One outcome of cGAS-STING signaling is the activation of the absent in melanoma 2 inflammasome in response to F. novicida infection. Whereas the absent in melanoma 2 inflammasome is beneficial to the host during F. novicida infection, type I IFN signaling by STING and IFN regulatory factor 3 is detrimental to the host during F. novicida infection. Collectively, our studies indicate that cGAS and Ifi204 cooperate to sense cytosolic dsDNA and F. novicida infection to produce a strong type I IFN response.


Assuntos
Francisella/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/metabolismo , Interferon Tipo I/metabolismo , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/metabolismo , Fosfoproteínas/metabolismo , Animais , Células da Medula Óssea/metabolismo , Linhagem Celular , Citosol/imunologia , Citosol/metabolismo , DNA/imunologia , Modelos Animais de Doenças , Expressão Gênica , Regulação da Expressão Gênica , Infecções por Bactérias Gram-Negativas/genética , Infecções por Bactérias Gram-Negativas/mortalidade , Inflamassomos/metabolismo , Fator Regulador 3 de Interferon/deficiência , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/genética , Nucleotidiltransferases/genética , Fosfoproteínas/genética , Ligação Proteica , Interferência de RNA , Transdução de Sinais
19.
Cell Host Microbe ; 14(2): 159-70, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23954155

RESUMO

Eradication of persistent intracellular bacterial pathogens with antibiotic therapy is often slow or incomplete. However, strategies to augment antibiotics are hampered by our poor understanding of the nutritional environment that sustains chronic infection. Here we show that the intracellular pathogen Brucella abortus survives and replicates preferentially in alternatively activated macrophages (AAMs), which are more abundant during chronic infection. A metabolic shift induced by peroxisome proliferator-activated receptor γ (PPARγ), which increases intracellular glucose availability, is identified as a causal mechanism promoting enhanced bacterial survival in AAMs. Glucose uptake was crucial for increased replication of B. abortus in AAMs, and for chronic infection, as inactivation of the bacterial glucose transporter gluP reduced both intracellular survival in AAMs and persistence in mice. Thus, a shift in intracellular nutrient availability induced by PPARγ promotes chronic persistence of B. abortus within AAMs, and targeting this pathway may aid in eradicating chronic infection.


Assuntos
Brucella abortus/fisiologia , Glucose/metabolismo , Ativação de Macrófagos , Macrófagos/microbiologia , Viabilidade Microbiana , PPAR gama/metabolismo , Animais , Brucella abortus/crescimento & desenvolvimento , Brucella abortus/imunologia , Brucella abortus/metabolismo , Macrófagos/imunologia , Camundongos
20.
Cell Host Microbe ; 14(2): 171-182, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23954156

RESUMO

Host-adapted Salmonella strains are responsible for a number of disease manifestations in mammals, including an asymptomatic chronic infection in which bacteria survive within macrophages located in systemic sites. However, the host cell physiology and metabolic requirements supporting bacterial persistence are poorly understood. In a mouse model of long-term infection, we found that S. typhimurium preferentially associates with anti-inflammatory/M2 macrophages at later stages of infection. Further, PPARδ, a eukaryotic transcription factor involved in sustaining fatty acid metabolism, is upregulated in Salmonella-infected macrophages. PPARδ deficiency dramatically inhibits Salmonella replication, which is linked to the metabolic state of macrophages and the level of intracellular glucose available to bacteria. Pharmacological activation of PPARδ increases glucose availability and enhances bacterial replication in macrophages and mice, while Salmonella fail to persist in Pparδ null mice. These data suggest that M2 macrophages represent a unique niche for long-term intracellular bacterial survival and link the PPARδ-regulated metabolic state of the host cell to persistent bacterial infection.


Assuntos
Interações Hospedeiro-Patógeno , Macrófagos/microbiologia , PPAR delta/metabolismo , Salmonella typhimurium/fisiologia , Animais , Modelos Animais de Doenças , Glucose/metabolismo , Camundongos , Viabilidade Microbiana , Salmonelose Animal , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA