Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nutr Biochem ; 42: 7-16, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28103535

RESUMO

(-)-Epigallocatechin gallate (EGCG), a green tea catechin, acts as a synergist with various anticancer drugs, including retinoids. Am80 is a synthetic retinoid with a different structure from all-trans-retinoic acid: Am80 is now clinically utilized as a new drug for relapsed and intractable acute promyelocytic leukemia patients. Our experiments showed that the combination of EGCG and Am80 synergistically induced both apoptosis in human lung cancer cell line PC-9 and up-regulated expressions of growth arrest and DNA damage-inducible gene 153 (GADD153), death receptor 5, and p21waf1 genes in the cells. To understand the mechanisms of synergistic anticancer activity of the combination, we gave special attention to the lysine acetylation of proteins. Proteomic analysis using nanoLC-ESI-MS/MS revealed that PC-9 cells treated with the combination contained 331 acetylated proteins, while nontreated cells contained 553 acetylated proteins, and 59 acetylated proteins were found in both groups. Among them, the combination increased acetylated-p53 and acetylated-α-tubulin through reduction of histone deacetylase (HDAC) activity in cytosol fraction, although the levels of acetylation in histones H3 or H4 did not change, and the combination reduced protein levels of HDAC4, -5 and -6 by 20% to 80%. Moreover, we found that a specific inhibitor of HDAC4 and -5 strongly induced p21waf1 gene expression, and that of HDAC6 induced both GADD153 and p21waf1 gene expression, which resulted in apoptosis. All results demonstrate that EGCG in combination with Am80 changes levels of acetylation in nonhistone proteins via down-regulation of HDAC4, -5 and -6 and stimulates apoptotic induction.


Assuntos
Benzoatos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Catequina/análogos & derivados , Inibidores de Histona Desacetilases/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Tetra-Hidronaftalenos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Catequina/farmacologia , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação para Baixo/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HL-60 , Desacetilase 6 de Histona/antagonistas & inibidores , Desacetilase 6 de Histona/metabolismo , Histona Desacetilases/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Chá/química , Fator de Transcrição CHOP/genética
2.
Biochem Biophys Res Commun ; 443(1): 1-6, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24269590

RESUMO

Cell motility and cell stiffness are closely related to metastatic activity of cancer cells. (-)-Epigallocatechin gallate (EGCG) has been shown to inhibit spontaneous metastasis of melanoma cell line into the lungs of mice, so we studied the effects of EGCG on cell motility, cell stiffness, and expression of vimentin and Slug, which are molecular phenotypes of epithelial-mesenchymal transition (EMT). Treatments of human non-small cell lung cancer cell lines H1299 and Lu99 with 50 and 100 µM EGCG reduced cell motility to 67.5% and 43.7% in H1299, and 71.7% and 31.5% in Lu99, respectively in in vitro wound healing assay. Studies on cell stiffness using atomic force microscope (AFM) revealed that treatment with 50 µM EGCG increased Young's modulus of H1299 from 1.24 to 2.25 kPa and that of Lu99 from 1.29 to 2.28 kPa, showing a 2-fold increase in cell stiffness, i.e. rigid elasticity of cell membrane. Furthermore, treatment with 50 µM EGCG inhibited high expression of vimentin and Slug in the cells at a leading edge of scratch. Methyl-ß-cyclodextrin, a reagent to deplete cholesterol in plasma membrane, showed inhibition of EMT phenotypes similar that by EGCG, suggesting that EGCG induces inhibition of EMT phenotypes by alteration of membrane organization.


Assuntos
Antineoplásicos/farmacologia , Catequina/análogos & derivados , Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Metástase Neoplásica/prevenção & controle , Fatores de Transcrição/antagonistas & inibidores , Vimentina/antagonistas & inibidores , Animais , Catequina/farmacologia , Linhagem Celular Tumoral , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Colesterol/metabolismo , Módulo de Elasticidade/efeitos dos fármacos , Humanos , Camundongos , Microscopia de Força Atômica , Fatores de Transcrição da Família Snail , beta-Ciclodextrinas/farmacologia
3.
Mol Cancer Res ; 11(11): 1362-74, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23982217

RESUMO

In several types of human cancer, the gene expression of Reprimo, a highly glycosylated protein, is frequently silenced via methylation of its promoter. The aim of this study was to characterize the epigenetic inactivation of Reprimo and its biologic function and clinical relevance in gastric cancer. The correlation between Reprimo methylation and clinical relevance was assessed in 83 primary human gastric cancer tissues. The effects of Reprimo expression were also examined using in vitro and in vivo assays. Reprimo methylation was cancer specific and frequently observed. In two gastric cancer cell lines without Reprimo methylation, we observed faint or weak Reprimo expression under normal conditions and high expression under DNA-damaging conditions. In four gastric cancer cell lines with Reprimo methylation, however, Reprimo expression remained faint even under DNA-damaging conditions, with expression being restored in combination with agents that induce demethylation. Enforced Reprimo expression robustly inhibited cell proliferation and anchorage-independent colony formation and enhanced DNA damage-induced apoptosis. Inverse effects were observed via siRNA-mediated knockdown of endogenous Reprimo. Reprimo expression inhibited tumorigenesis in vivo. Reprimo methylation was also associated with a poor response in patients with gastric cancer treated with chemotherapy (P» 0.028), and a poor prognosis in patients with advanced gastric cancer (P» 0.03). In conclusion, Reprimo expression is normally induced in response to DNA damage, acting as a novel tumor suppressor in gastric cancer. However, Reprimo methylation abrogates its expression and effects. The clinical assessment of Reprimo promoter methylation may serve not only as a predictive marker for chemotherapy, but also as a marker for tumor aggressiveness.


Assuntos
Proteínas de Ciclo Celular/genética , Glicoproteínas/genética , Regiões Promotoras Genéticas , Neoplasias Gástricas/genética , Adulto , Idoso , Animais , Antineoplásicos/farmacologia , Biomarcadores Tumorais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Cisplatino/farmacologia , Feminino , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Glicoproteínas/metabolismo , Humanos , Masculino , Metilação , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
PLoS One ; 8(4): e60365, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23565235

RESUMO

Here, we have reported that motilin can induce contractions in a dose-dependent manner in isolated Suncus murinus (house musk shrew) stomach. We have also shown that after pretreatment with a low dose of motilin (10(-10) M), ghrelin also induces gastric contractions at levels of 10(-10) M to 10(-7) M. However, the neural mechanism of ghrelin action in the stomach has not been fully revealed. In the present study, we studied the mechanism of ghrelin-induced contraction in vitro using a pharmacological method. The responses to ghrelin in the stomach were almost completely abolished by hexamethonium and were significantly suppressed by the administration of phentolamine, prazosin, ondansetron, and naloxone. Additionally, N-nitro-l-arginine methylester significantly potentiated the contractions. Importantly, the mucosa is essential for ghrelin-induced, but not motilin-induced, gastric contractions. To evaluate the involvement of intrinsic primary afferent neurons (IPANs), which are multiaxonal neurons that pass signals from the mucosa to the myenteric plexus, we examined the effect of the IPAN-related pathway on ghrelin-induced contractions and found that pretreatment with adenosine and tachykinergic receptor 3 antagonists (SR142801) significantly eliminated the contractions and GR113808 (5-hydroxytryptamine receptor 4 antagonist) almost completely eliminated it. The results indicate that ghrelin stimulates and modulates suncus gastric contractions through cholinergic, adrenergic, serotonergic, opioidergic neurons and nitric oxide synthases in the myenteric plexus. The mucosa is also important for ghrelin-induced gastric contractions, and IPANs may be the important interneurons that pass the signal from the mucosa to the myenteric plexus.


Assuntos
Motilidade Gastrointestinal/efeitos dos fármacos , Grelina/farmacologia , Neurônios Aferentes/metabolismo , Estômago/inervação , Estômago/fisiologia , Animais , Feminino , Técnicas In Vitro , Neurônios Aferentes/efeitos dos fármacos , Musaranhos
5.
Proc Natl Acad Sci U S A ; 109(28): 11121-6, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22723348

RESUMO

G protein-coupled receptors (GPCRs) are major drug targets, and their ligands are currently being explored and developed by many pharmaceutical companies and independent researchers. Class A (rhodopsin-like) GPCRs compose a predominant GPCR family; therefore, class A GPCR ligands are in demand. Growth hormone secretagogue receptor (GHS-R) is a class A GPCR that stimulates food intake by binding to its peptide ligand, ghrelin. Therefore, antagonists of GHS-R are expected to exert antiobesity function. In this article, we describe the use of cDNA display to screen for successfully and identify an antagonistic peptide of GHS-R. The antagonistic peptide inhibited the ghrelin-induced increase in intracellular Ca(2+) in vitro (IC(50) = approximately 10 µM) and repressed the contraction of isolated animal stomach in response to ghrelin. Furthermore, peripheral administration of the peptide inhibited the food intake of mice. This work provides new insight into the development of antiobesity drugs and describes a method for the discovery of unique peptide ligands for class A GPCRs.


Assuntos
DNA Complementar/metabolismo , Receptores de Grelina/metabolismo , Animais , Fármacos Antiobesidade/farmacologia , Células CHO , Cálcio/química , Cálcio/metabolismo , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Biblioteca Gênica , Grelina/metabolismo , Técnicas In Vitro , Concentração Inibidora 50 , Ligantes , Masculino , Camundongos , Modelos Biológicos , Peptídeos/química , Reação em Cadeia da Polimerase/métodos , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA