Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Mol Biol Rep ; 47(5): 3615-3628, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32314187

RESUMO

Cisplatin (CDDP) is a potent chemotherapeutic drug, but its severe side-effects often prohibit its use. Combined treatment with CDDP plus Farnesol (FAR) and their co-encapsulated nano form were investigated in in vitro to examine if synergistic cytotoxicity of this combination could reduce unwanted side-effects of CDDP chemotherapy and potentiate CDDP anticancer activity against hepatocellular carcinoma (HCC) cells. After finding combination therapy of CDDP and FAR successfully combat HCC we formulated co-encapsulation of CDDP and FAR within poly(lactic-co-glycolic acid) copolymer (NCDDPFAR) by following the standardized solvent displacement method. NCDDPFAR treatment caused faster drug mobility, sustained particle release, site-specific action and higher percentage of apoptotic death compared with single drug treatment even at relatively low concentrations. Co-encapsulation of two drugs exhibited additive effects against HCC; FAR reduced CDDP-induced glutathione level by increasing expression of CYP2E1 while CDDP directly interacted with DNA; FAR up-regulated the expression of TopII, thereby promoting DNA breaks and escaping DNA repair machinery. Expression pattern of apoptotic genes like p53, Bax, cytochrome c and caspase-3 suggested that NCDDPFAR induced HCC cell death through mitochondrial intrinsic pathway. Administration of NCDDPFAR had better ability of drug carriage and enhanced anticancer potentials against HCC cells.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Sinergismo Farmacológico , Farneseno Álcool/farmacologia , Farneseno Álcool/uso terapêutico , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Nanopartículas/química , Nanopartículas/uso terapêutico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo
3.
J Ayurveda Integr Med ; 11(1): 24-36, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30115410

RESUMO

BACKGROUND: Cisplatin is a widely-used potent anti-cancer drug having severe side-effects precluding its sustained use. OBJECTIVES: Poly (lactide-co-glycolide) (PLGA)-nanoparticles loaded Boldine, an antioxidant ingredient of ethanolic extract of Boldo plant (Peumus boldus) was tested in cancer mice model, Mus musculus to examine if it could reduce unwanted Cisplatin-induced toxicity in normal tissue. MATERIAL AND METHODS: Nano-encapsulation of Boldine was done by following the standardized solvent displacement method. Physico-chemical characterization of PLGA-encapsulated nano-Boldine (NBol) was accomplished through analyses of various spectroscopic techniques. Status of major antioxidant enzymes, functional markers, and lipid peroxidation (LPO) was also determined in certain tissue and serum samples. Percentage of cells undergoing cytotoxic death, Reactive oxygen species (ROS) accumulation and mitochondrial functioning were analyzed in both normal and cancer mice. Nanoscale changes in chromatin organization were assessed by Transmission electron microscopy (TEM). mRNA and protein expressions of Top II, Bax, Bcl-2, Cyt c, caspase 3 were studied by RT-PCR, immunoblot and immunofluorescence. RESULTS: NBol had faster mobility, site-specific action and ability of sustained particle release. NBol readily entered cells, prevented Cisplatin to intercalate with dsDNA resulting in reduction of chromatin condensation, with corresponding changes in ROS levels, mitochondrial functioning and antioxidant enzyme activities, leading to reduction in Deoxyribose nucleic acid (DNA) damage and cytotoxic cell death. Expression pattern of apoptotic genes like Top II, p53, Bax, Bcl-2, cytochrome c and caspase-3 suggested greater cytoprotective potentials of NBol in normal tissues. CONCLUSIONS: Compared to Boldine (Bol), NBol had better ability of drug carriage and protective potentials (29.00% approximately) against Cisplatin-induced toxicity. Combinational therapeutic use of PLGA-NBol can reduce unwanted Cisplatin-induced cellular toxicity facilitating use of Cisplatin.

4.
Homeopathy ; 106(4): 203-213, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29157470

RESUMO

OBJECTIVES: To examine if HIV nosode in 30c dilution (HIV 30c) has therapeutic potential against lung cancer cells (A549) as compared to WRL-68 normal cells and to elucidate its possible molecular mechanism of action on DNA replication and apoptosis. METHODS: Effects of HIV 30c were thoroughly tested for its possible anticancer potential on A549 cells (lung cancer); WRL-68 normal liver cells served as control. Three doses, one at LD50 and two below LD-50, were used. Proliferation, migration and senescence assays were made and generation of reactive oxygen species (ROS) studied by routine techniques. The ability of HIV 30c to induce apoptosis in A549 cells and its possible signalling pathway were determined using immunoblots of relevant signal proteins and confocal microscopy, including studies on telomerase reverse transcriptase (TERT) and topoisomerase II (Top II) activities, intimately associated with cell division and DNA replication. RESULTS: HIV 30c prevented cancer cell proliferation and migration, induced pre-mature senescence, enhanced pro-apoptotic signal proteins like p53, bax, cytochrome c, caspase-3 and inhibited anti-apoptotic signal proteins Bcl2, TERT and Top II, changed mitochondrial membrane potential and caused externalization of phosphatidyl serine. Thus, it induced apoptosis as also evidenced from increase in cells with distorted membrane morphology, nuclear condensation, DNA fragmentation, and ROS, typical of apoptosis in progress. CONCLUSION: HIV 30c nosode has therapeutic potential for inducing cytotoxic effects on A549 cells as manifested by changes in nuclear condensation, DNA fragmentation, ROS generation and MMP, and for its inhibitory action on cell proliferation, cell migration, expression of telomerase reverse transcriptase and Top II genes, and increasing expression of pro-apoptotic genes.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Pulmonares/imunologia , Células A549/efeitos dos fármacos , Células A549/imunologia , Análise de Variância , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , HIV-1/imunologia , Células Hep G2/efeitos dos fármacos , Células Hep G2/imunologia , Homeopatia/métodos , Humanos , Neoplasias Pulmonares/genética , Materia Medica/farmacologia , Materia Medica/uso terapêutico , Espécies Reativas de Oxigênio/farmacologia , Espécies Reativas de Oxigênio/uso terapêutico
5.
Environ Toxicol Pharmacol ; 46: 147-157, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27458703

RESUMO

Chlorophyllin (CHL), a sodium-copper-salt derived from chlorophyll, has been widely used as a food-dye, also reportedly having some anti-cancer effect. We tested if PLGA-loaded CHL (NCHL) could have additional protective abilities through its faster and targeted drug delivery in cancer cells. Physico-chemical characterization of NCHL was done through atomic-force microscopy and UV-spectroscopy. NCHL demonstrated greater ability of drug uptake and strong anti-cancer potentials in non-small cell lung cancer cells, A549, as revealed from data of% cell viability, generation of reactive-oxygen-species and expression of bax, bcl2, caspase3, p53 and cytochrome c proteins. Circular dichroic spectral data indicated strong binding of NCHL with calf-thymus-DNA, causing a conformational/structural change in DNA. Further, NCHL could cross the blood-brain-barrier in mice and showed greater efficacy in recovery process of tissue damage, reduction in chromosomal aberrations and% of micronuclei in co-mutagens (Sodiumarsenite+Benzo[a]Pyrene)-treated mice at a much reduced dose, indicating its use in therapeutic oncology.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Clorofilídeos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antioxidantes/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Clorofilídeos/química , Clorofilídeos/metabolismo , Aberrações Cromossômicas , Dicroísmo Circular , Citocromos c/metabolismo , DNA/metabolismo , Humanos , Ácido Láctico/química , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
J Integr Med ; 14(3): 209-18, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27181128

RESUMO

OBJECTIVE: Homeopathic nosodes have seldom been scientifically validated for their anticancer effects. This study was conducted to examine if a recently developed hepatitis C nosode has demonstrable anticancer potential in cancer cells in vitro. METHODS: Anticancer effects of Hepatitis C 30C (Hep C 30), if any, were initially tested on three cancer cell lines, HepG2 (liver cancer), MCF-7 (breast cancer) and A549 (lung cancer) and one normal liver cell line WRL-68 cells and subsequently a more thorough study using further scientific protocols was undertaken on HepG2 cells (against WRL-68 cells as the normal control) as HepG2 cells showed better anticancer response than the other two. Three doses, one at 50% lethal dose (LD50) and the other two below LD50, were used on HepG2 cells subsequently. Protocols like apoptosis induction and its possible signaling mechanism were deployed using immunoblots of relevant signal proteins and confocal microscopy, with particular reference to telomerase and topoisomerase II (Top II) activities, two strong cancer biomarkers for their direct relationship with divisional activities of cells and DNAs. RESULTS: Hep C 30 induced apoptosis, caused distorted cell morphology typical of apoptotic cells, increased reactive oxygen species generation and produced increased DNA nicks. Further it enhanced pro-apototic signal proteins like Bax, cytochrome c and inhibited anti-apoptotic signal proteins, Bcl-2, cytochrome c and caspase-3, changed mitochondrial membrane potential and caused externalization of phosphatidylserine. The drug also decreased expression of two cancer biomarkers, Top II and telomerase, consistent with its anticancer effect. CONCLUSION: Hep C 30 has demonstrable anticancer effects against liver cancer cells in vitro.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Materia Medica , Mitocôndrias/efeitos dos fármacos , Telomerase/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Hepacivirus , Humanos , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/patologia , Mitocôndrias/fisiologia
7.
J Integr Med ; 14(2): 143-53, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26988436

RESUMO

OBJECTIVE: To provide in vitro evidence of Psorinum treatment against cancer cells in a controlled study. METHODS: Effects of homeopathic Psorinum 6× on cell viability were initially determined in several cancer cell lines, including A549, HepG2 and MCF-7, using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and an ethanol 6× control. The cell line that exhibited highest inhibition was selected and used in the following experiments. A range of Psorinum 6× doses was used to explore treatment effects on cell cycle arrest, cell death (apoptosis), generation of reactive oxygen species (ROS) and change in mitochondrial membrane potential (MMP) using flow cytometry and fluorescence microscopy, respectively. Expression of several signal proteins related to apoptosis and cell survival were quantified with Western blotting and confocal microscopy. Further, circular dichroism (CD) spectroscopy was used to determine possible drug-DNA interactions, as well as the induction of conformational changes. RESULTS: Treatment of cancer cell lines with Psorinum showed greater anticancer effects in A549 cells than in others. In A549 cells Psorinum treatment inhibited cell proliferation at 24 h after treatment, and arrested cell cycle at sub-G1 stage. It also induced ROS generation, MMP depolarization, morphological changes and DNA damage, as well as externalization of phosphatidyl serine. Further, increases in p53 expression, Bax expression, cytochrome c release, along with reduction of Bcl-2 level and caspase-3 activation were observed after Psorinum 6× treatment, which eventually drove A549 cells towards the mitochondria-mediated caspase-3-dependent pathway. CD spectroscopy revealed direct interaction of Psorinum with DNA, using calf thymus-DNA as target. CONCLUSION: Psorinum 6× triggered apoptosis in A549 cells via both up- and down-regulations of relevant signal proteins, including p53, caspase-3, Bax and Bcl-2.


Assuntos
Homeopatia , Neoplasias Pulmonares/tratamento farmacológico , Caspase 3/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas c-bcl-2/análise , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2/análise
8.
J Pharmacopuncture ; 18(3): 32-41, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26389000

RESUMO

OBJECTIVES: Condurango (Gonolobus condurango) extract is used by complementary and alternative medicine (CAM) practitioners as a traditional medicine, including homeopathy, mainly for the treatment of syphilis. Condurango bark extract is also known to reduce tumor volume, but the underlying molecular mechanisms still remain unclear. METHODS: Using a cervical cancer cell line (HeLa) as our model, the molecular events behind condurango extract's (CE's) anticancer effect were investigated by using flow cytometry, immunoblotting and reverse transcriptase-polymerase chain reaction (RT-PCR). Other included cell types were prostate cancer cells (PC3), transformed liver cells (WRL-68), and peripheral blood mononuclear cells (PBMCs). RESULTS: Condurango extract (CE) was found to be cytotoxic against target cells, and this was significantly deactivated in the presence of N-acetyl cysteine (NAC), a scavenger of reactive oxygen species (ROS), suggesting that its action could be mediated through ROS generation. CE caused an increase in the HeLa cell population containing deoxyribonucleic acid (DNA) damage at the G zero/Growth 1 (G0/G1) stage. Further, CE increased the tumor necrosis factor alpha (TNF-α) and the fas receptor (FasR) levels both at the ribonucleic acid (RNA) and the protein levels, indicating that CE might have a cytotoxic mechanism of action. CE also triggered a sharp decrease in the expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB ) both at the RNA and the protein levels, a possible route to attenuation of B-cell lymphoma 2 (Bcl-2), and caused an opening of the mitochondrial membrane's permeability transition (MPT) pores, thus enhancing caspase activities. CONCLUSION: Overall, our results suggest possible pathways for CE mediated cytotoxicity in model cancer cells.

9.
J Integr Med ; 12(5): 425-38, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25292342

RESUMO

OBJECTIVE: Use of cisplatin, a conventional anticancer drug, is restricted because it generates strong hepatotoxicity by accumulating in liver. Therefore its anticancer potential can only be fully exploited if its own toxicity is considerably reduced. Towards this goal, ethanolic extract of the plant, Boldo (Peumus boldus), known for its antihepatotoxic effects, was used simultaneously with cisplatin, to test its ability to reduce cisplatin's cytotoxicity without affecting its anticancer potential. METHODS: The cytotoxicity of Boldo extract (BE) and cisplatin, administered alone and in combination, was determined in three cancer cell lines (A549, HeLa, and HepG2) and in normal liver cells (WRL-68). Drug-DNA interaction, DNA damage, cell cycle, apoptosis, reactive oxygen species (ROS) and mitochondrial membrane potential (MMP, ΔΨ) were also studied. Hepatotoxicity and antioxidant activity levels were determined by alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase and glutathione assays in mice. The cytotoxicity of related proteins was tested by Western blotting. RESULTS: Co-administration of BE and cisplatin increased viability of normal cells, but had no effect on the viability of cancer cells. Boldo protected liver from damage and normalized different antioxidant enzyme levels in vivo and also reduced ROS and re-polarized MMP in vitro. Bax and cytochrome c translocation was reduced with caspase 3 down-regulation. Further, a drug-DNA interaction study revealed that BE reduced cisplatin's DNA-binding capacity, resulting in a reduction in DNA damage. CONCLUSION: Results indicated that a low dose of BE could be used beneficially in combination with cisplatin to reduce its toxicity without hampering cisplatin's anticancer effect. These findings signify a potential future use of BE in cancer therapy.


Assuntos
Antineoplásicos/toxicidade , Cisplatino/toxicidade , Hepatócitos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Peumus , Extratos Vegetais/farmacologia , Animais , Células Cultivadas , Dano ao DNA , Feminino , Glutationa/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Masculino , Camundongos , Neoplasias/patologia
10.
Pharmacogn Mag ; 10(Suppl 3): S524-33, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25298670

RESUMO

OBJECTIVE: Conium maculatum extract is used as a traditional medicine for cervix carcinoma including homeopathy. However, no systematic work has so far been carried out to test its anti-cancer potential against cervix cancer cells in vitro. Thus, in this study, we investigated whether ethanolic extract of conium is capable of inducing cytotoxicity in different normal and cancer cell lines including an elaborate study in HeLa cells. MATERIALS AND METHODS: Conium's effects on cell cycle, reactive oxygen species (ROS) accumulation, mitochondrial membrane potential (MMP) and apoptosis, if any, were analyzed through flow cytometry. Whether Conium could damage DNA and induce morphological changes were also determined microscopically. Expression of different proteins related to cell death and survival was critically studied by western blotting and ELISA methods. If Conium could interact directly with DNA was also determined by circular dichroism (CD) spectroscopy. RESULTS: Conium treatment reduced cell viability and colony formation at 48 h and inhibited cell proliferation, arresting cell cycle at sub-G stage. Conium treatment lead to increased generation of reactive oxygen species (ROS) at 24 h, increase in MMP depolarization, morphological changes and DNA damage in HeLa cells along with externalization of phosphatidyl serine at 48 hours. While cytochrome c release and caspase-3 activation led HeLa cells toward apoptosis, down-regulation of Akt and NFkB inhibited cellular proliferation, indicating the signaling pathway to be mediated via the mitochondria-mediated caspase-3-dependent pathway. CD-spectroscopy revealed that Conium interacted with DNA molecule. CONCLUSION: Overall results validate anti-cancer potential of Conium and provide support for its use in traditional systems of medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA