Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
3.
Proteins ; 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37615273

RESUMO

Fatty acids are used in fundamental cellular processes, such as membrane biogenesis, energy generation, post-translational modification of proteins, and so forth. These processes require the activation of fatty acids by adenosine triphosphate (ATP), followed by condensation with coenzyme-A (CoA), catalyzed by the omnipresent enzyme called Fatty acyl-CoA ligases (FACLs). However, Fatty acyl-AMP ligases (FAALs), the structural homologs of FACLs, operate in an unprecedented CoA-independent manner. FAALs transfer fatty acids to the acyl carrier protein (ACP) domain of polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS) for the biosynthesis of various antibiotics, lipopeptides, virulent complex lipids, and so forth in bacteria. Recent structural and biochemical insights from our group provide a detailed understanding of the mode of CoA rejection and ACP acceptance by FAALs. In this review, we have discussed advances in the mechanistic, evolutionary, and functional understanding of FAALs and FAAL-like domains across life forms. Here, we are proposing a "Five-tier" mechanistic model to explain the specificity of FAALs. We further demonstrate how FAAL-like domains have been repurposed into a new family of proteins in eukaryotes with a novel function in lipid metabolism.

4.
ACS Nano ; 16(11): 18307-18314, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36346650

RESUMO

Self-assembled peptide fibrils have been used extensively to template the organization of metal nanoparticles in a one-dimensional (1D) array. It has been observed that the formation of the 1D arrays with a width of a single or few nanoparticles (viz. 20 nm diameter) is only possible if the templating fibers have comparable diameters (viz. ≤20 nm). Accordingly, until today, all the peptide-based templates enabling such 1D arrays have very low persistence lengths, a property that depends strongly on the diameter of the template, owing to the inherent flexibility of only a few nanometer-wide fibers. Here, we demonstrate the formation of high persistence length 1D arrays templated by a short self-assembling peptide fibril with an asymmetrically distributed charged surface. The asymmetric nature of the peptide fibril allows charge-dependent deposition of the nanoparticles only to the part of the fiber with complementary charges, and the rest of the fibril surface remains free of nanoparticles. Consequently, fibers with a much higher diameter, which will have a higher persistence length, are able to template single or few nanoparticle-wide 1D arrays. Detailed microscopy, molecular dynamics simulations, and crystal structure analysis provide molecular-level insights into fiber asymmetry and its interactions with diverse nanostructures such as gold and magnetic nanoparticles. This study will afford an alternative paradigm for high persistence length 1D array fabrication comparable to DNA nanotechnology and lithography but with tremendous cost-effectiveness.


Assuntos
Nanopartículas Metálicas , Nanofibras , Nanoestruturas , Propriedades de Superfície , Ouro/química , Nanoestruturas/química , Nanopartículas Metálicas/química , Peptídeos/química
5.
Elife ; 102021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34490847

RESUMO

Fatty acyl-AMP ligases (FAALs) channelize fatty acids towards biosynthesis of virulent lipids in mycobacteria and other pharmaceutically or ecologically important polyketides and lipopeptides in other microbes. They do so by bypassing the ubiquitous coenzyme A-dependent activation and rely on the acyl carrier protein-tethered 4'-phosphopantetheine (holo-ACP). The molecular basis of how FAALs strictly reject chemically identical and abundant acceptors like coenzyme A (CoA) and accept holo-ACP unlike other members of the ANL superfamily remains elusive. We show that FAALs have plugged the promiscuous canonical CoA-binding pockets and utilize highly selective alternative binding sites. These alternative pockets can distinguish adenosine 3',5'-bisphosphate-containing CoA from holo-ACP and thus FAALs can distinguish between CoA and holo-ACP. These exclusive features helped identify the omnipresence of FAAL-like proteins and their emergence in plants, fungi, and animals with unconventional domain organizations. The universal distribution of FAALs suggests that they are parallelly evolved with FACLs for ensuring a CoA-independent activation and redirection of fatty acids towards lipidic metabolites.


Assuntos
Acil Coenzima A/metabolismo , Monofosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Ácidos Graxos/metabolismo , Ligases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Ligases/química , Ligases/genética , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
6.
J Colloid Interface Sci ; 594: 326-333, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33770567

RESUMO

Structural colors are abundant in nature and bear advantages over pigment-based colors, such as higher durability, brilliance and often physical hydrophobicity, thus underlying their vast potential for technological applications. Recently, biomimetics of complex natural topologies resulting in such effects has been extensively studied, requiring advanced processing and fabrication techniques. Yet, artificial topologies combining structural coloration and hydrophobicity have not been reported. Herein, we present the bottom-up fabrication of short self-assembling peptides as surface covering films, resulting in an easily achievable multilevel morphology of primary structures in a foam-like enclosure, producing structural colors and hydrophobicity. We demonstrate simple techniques allowing controlled coloration of different surfaces while maintaining an >100° water contact angle (WCA). The new artificial topology is much simpler than the natural counterparts and is not limited to a specific peptide, thus allowing the design of modular materials with unparalleled multifunctionalities and potential for further tuning and modifications.


Assuntos
Biomimética , Peptídeos , Interações Hidrofóbicas e Hidrofílicas , Água
7.
ACS Nano ; 13(11): 12630-12637, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31647865

RESUMO

Coiled-coil peptides represent the principal building blocks for structure-based design of bionanomaterials. The sequence-structure relationship and precise nanoscale ordering of the coiled-coil helices originate from the knob-into-hole (KIH) packing of side chains. The helical interface stabilized by the KIH interaction is known to have chain lengths ranging from 30 to 1000 residues. Yet the shortest peptide required for oligomerization through KIH assembly is still unknown. Here, we report that through atomic resolution a minimal seven-residue amphipathic helix forms a different type of KIH motif, termed "supramolecular KIH packing", which confers an exceptional stability to the helical dimers. Significantly, at a low pH, the peptide self-assembles into nanofibers with coiled-coil architecture resembling the natural fibrous proteins. Furthermore, hierarchical ordering of the nanofibers affords lyotropic liquid crystals composed of a shortest natural helical sequence. Thus, this study expands the sequence space for a coiled-coil folding manifold and provides another paradigm for designer nanomaterials from minimal helical sequences.


Assuntos
Materiais Biocompatíveis , Nanofibras/química , Peptídeos , Estrutura Secundária de Proteína , Motivos de Aminoácidos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Cristalografia por Raios X , Cristais Líquidos , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica
8.
ACS Nano ; 13(2): 1703-1712, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30673213

RESUMO

Metabolite materials are extremely useful to obtain functional bioinspired assemblies with unique physical properties for various applications in the fields of material science, engineering, and medicine by self-assembly of the simplest biological building blocks. Supramolecular co-assembly has recently emerged as a promising extended approach to further expand the conformational space of metabolite assemblies in terms of structural and functional complexity. Yet, the design of synergistically co-assembled amino acids to produce tailor-made functional architectures is still challenging. Herein, we propose a design rule to predict the supramolecular co-assembly of naturally occurring amino acids based on their interlayer separation distances observed in single crystals. Using diverse experimental techniques, we demonstrate that amino acids with comparable interlayer separation strongly interact and co-assemble to produce structural composites distinctly different from their individual properties. However, such an interaction is hampered in a mixture of differentially layer-separated amino acids, which self-sort to generate individual characteristic structures. This study provides a different paradigm for the modular design of supramolecular assemblies based on amino acids with predictable properties.


Assuntos
Aminoácidos/química , Nanoestruturas/química , Peptídeos/química , Espectrometria de Massas , Microscopia Eletrônica de Varredura , Simulação de Dinâmica Molecular
9.
J Am Chem Soc ; 141(1): 363-369, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30532955

RESUMO

The ensemble of native, folded state was once considered to represent the global energy minimum of a given protein sequence. More recently, the discovery of the cross-ß amyloid state revealed that deeper energy minima exist, often associated with pathogenic, fibrillar deposits, when the concentration of proteins reaches a critical value. Fortunately, a sizable energy barrier impedes the conversion from native to pathogenic states. However, little is known about the structure of the related transition state. In addition, there are indications of polymorphism in the amyloidogenic process. Here, we report the first evidence of the conversion of metastable cross-α-helical crystals to thermodynamically stable cross-ß-sheet-like fibrils by a de novo designed heptapeptide. Furthermore, for the first time, we demonstrate at atomic resolution that the flip of a peptide plane from a type I to a type II' turn facilitates transformation to cross-ß structure and assembly of a dry steric zipper. This study establishes the potential of a peptide turn, a common protein secondary structure, to serve as a principal gatekeeper between a native metastable folded state and the amyloid state.


Assuntos
Amiloide/química , Agregados Proteicos , Cinética , Modelos Moleculares , Peptídeos/química , Dobramento de Proteína , Estrutura Secundária de Proteína , Termodinâmica
10.
Acc Chem Res ; 51(9): 2187-2197, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30095247

RESUMO

The unique physiochemical properties and multiscale organization of layered materials draw the attention of researchers across a wide range of scientific disciplines. Layered structures are commonly found in diverse biological systems where they fulfill various functions. A prominent example of layered biological materials is the organization of proteins and polypeptides into the archetypal aggregated amyloidal structures. While the organization of proteins into amyloid structures was initially associated with various degenerative disorders, it was later revealed that proteins not related to any disease could also form identical layered assemblies. Thus, it appears that the ability of peptides and proteins to produce amyloid-like aggregates represents a generic property of polyamides to assemble into higher order fibrillar structures. In the aggregated state, the peptide backbone forms ß-sheet structures which are further organized into layered arrangements. We have recently extended the identified amyloidogenic building blocks to include not only peptides or proteins, but also single amino acids and other metabolites. High resolution spectroscopy and crystallography analyses confirm the clear potential of amino acids and other metabolites to form layered amyloid-like aggregates showing biophysical and biochemical properties similar to protein amyloids. Therefore, the generic propensity of peptides and proteins backbones to assemble into layered organizations may emanate from their basic building block, the amino acid. In this Account, we aim to introduce the concept of supramolecular ß-sheet organization of single amino acids and to present an analysis of their layered-structure organization based on single crystal structures. We demonstrate that, despite the different side-chains that considerably vary in their chemical properties, all coded amino acids display a layer-like assembly stabilized by α-amine to α-carboxyl H-bonds, resembling supramolecular ß-sheet structures, while the side-chains determine the higher order organization of the layers. Our work presents the first analysis of the ß-sheet propensity of single amino acids in their unbound form, indicating an evolutionary predisposition. We classify the amino acids ß-sheet propensity on the basis of the interlayer separation distance in the crystal packing, which correlates well with previously reported classifications based on various criteria, such as hydrophobicity, steric bulkiness, and folding. In addition, we demonstrate that the relative direction of α-amine to α-carboxyl H-bonding pattern provides critical insights regarding the stabilization of parallel versus antiparallel ß-sheet structures by the various amino acids. Taken together, our analysis of amino acid crystals provides substantial information regarding protein folding and dynamics and could serve as basic rules set for the design of potential building blocks for molecular self-assembly to produce functional materials of tunable properties, an important objective of bottom-up nanotechnology.

11.
Nat Commun ; 8: 14018, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28084315

RESUMO

Extensive work has been invested in the design of bio-inspired peptide emulsifiers. Yet, none of the formulated surfactants were based on the utilization of the robust conformation and self-assembly tendencies presented by the hydrophobins, which exhibited highest surface activity among all known proteins. Here we show that a minimalist design scheme could be employed to fabricate rigid helical peptides to mimic the rigid conformation and the helical amphipathic organization. These designer building blocks, containing natural non-coded α-aminoisobutyric acid (Aib), form superhelical assemblies as confirmed by crystallography and microscopy. The peptide sequence is amenable to structural modularity and provides the highest stable emulsions reported so far for peptide and protein emulsifiers. Moreover, we establish the ability of short peptides to perform the dual functions of emulsifiers and thickeners, a feature that typically requires synergistic effects of surfactants and polysaccharides. This work provides a different paradigm for the molecular engineering of bioemulsifiers.


Assuntos
Peptídeos/química , Tensoativos/química , Sequência de Aminoácidos , Ácidos Aminoisobutíricos/química , Cristalografia , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Proteínas/química
12.
Nat Commun ; 6: 8615, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26468599

RESUMO

Inspired by the key role of super-helical motifs in molecular self-organization, several tandem heptad repeat peptides were used as building blocks to form well-ordered supramolecular nano-assemblies. However, the need for stable helical structures limits the length of the smallest described units to three heptad repeats. Here we describe the first-ever self-assembling single heptad repeat module, based on the ability of the non-coded α-aminoisobutyric acid to stabilize very short peptides in helical conformation. A conformationally constrained peptide comprised of aromatic, but not aliphatic, residues, at the first and fourth positions formed helical fibrillar assemblies. Single crystal X-ray analysis of the peptide demonstrates super-helical packing in which phenylalanine residues formed an 'aromatic zipper' arrangement at the molecular interface. The modification of the minimal building block with positively charged residues results in tight DNA binding ascribed to the combined factors of helicity, hydrophobicity and charge. The design of these peptides defines a new direction for assembly of super-helical nanostructures by minimal molecular elements.


Assuntos
Nanofibras/química , Peptídeos/química , Cristalização , DNA/química , Dimerização
13.
Chimia (Aarau) ; 66(12): 930-5, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23394277

RESUMO

Peptide-based self-assembly offers a unique entry into the construction of soft structures with interesting material properties and functions. Aromatic amino acid-containing peptides are commonly employed as they exhibit high propensity to aggregate due to increased hydrophobic content, promotion of favorable secondary structures, planarity and the possibility of π-π interactions. Incorporation of covalent scaffolds, stimuli-responsive handles and carbohydrate moieties augment beneficial characteristics to the resulting peptide conjugates. These modifications were shown to enforce self-association, elicit stimuli response and achieve improved hydrophilic properties, to name but a few.


Assuntos
Peptídeos/síntese química , Carboidratos/química , Estrutura Molecular , Tamanho da Partícula , Peptídeos/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA