Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Toxicol ; 6: 1285768, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38523647

RESUMO

Introduction: The Adverse Outcome Pathway (AOP) concept facilitates rapid hazard assessment for human health risks. AOPs are constantly evolving, their number is growing, and they are referenced in the AOP-Wiki database, which is supported by the OECD. Here, we present a study that aims at identifying well-defined biological areas, as well as gaps within the AOP-Wiki for future research needs. It does not intend to provide a systematic and comprehensive summary of the available literature on AOPs but summarizes and maps biological knowledge and diseases represented by the already developed AOPs (with OECD endorsed status or under validation). Methods: Knowledge from the AOP-Wiki database were extracted and prepared for analysis using a multi-step procedure. An automatic mapping of the existing information on AOPs (i.e., genes/proteins and diseases) was performed using bioinformatics tools (i.e., overrepresentation analysis using Gene Ontology and DisGeNET), allowing both the classification of AOPs and the development of AOP networks (AOPN). Results: AOPs related to diseases of the genitourinary system, neoplasms and developmental anomalies are the most frequently investigated on the AOP-Wiki. An evaluation of the three priority cases (i.e., immunotoxicity and non-genotoxic carcinogenesis, endocrine and metabolic disruption, and developmental and adult neurotoxicity) of the EU-funded PARC project (Partnership for the Risk Assessment of Chemicals) are presented. These were used to highlight under- and over-represented adverse outcomes and to identify and prioritize gaps for further research. Discussion: These results contribute to a more comprehensive understanding of the adverse effects associated with the molecular events in AOPs, and aid in refining risk assessment for stressors and mitigation strategies. Moreover, the FAIRness (i.e., data which meets principles of findability, accessibility, interoperability, and reusability (FAIR)) of the AOPs appears to be an important consideration for further development.

2.
Bioinformatics ; 38(14): 3665-3667, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35642895

RESUMO

SUMMARY: MicroRNAs have been shown to be able to modulate the tumor microenvironment and the immune response and hence could be interesting biomarkers and therapeutic targets in immuno-oncology; however, dedicated analysis tools are missing. Here, we present a user-friendly web platform MIO and a Python toolkit miopy integrating various methods for visualization and analysis of provided or custom bulk microRNA and gene expression data. We include regularized regression and survival analysis and provide information of 40 microRNA target prediction tools as well as a collection of curated immune related gene and microRNA signatures and processed TCGA data including estimations of infiltrated immune cells and the immunophenoscore. The integration of several machine learning methods enables the selection of prognostic and predictive microRNAs and gene interaction network biomarkers. AVAILABILITY AND IMPLEMENTATION: https://mio.icbi.at, https://github.com/icbi-lab/mio and https://github.com/icbi-lab/miopy. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
MicroRNAs , Neoplasias , Humanos , Software , MicroRNAs/genética , Redes Reguladoras de Genes , Neoplasias/genética , Aprendizado de Máquina , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA