Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 10: 1204483, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37522089

RESUMO

Mitochondria are cellular organelles which generate adenosine triphosphate (ATP) molecules for the maintenance of cellular energy through the oxidative phosphorylation. They also regulate a variety of cellular processes including apoptosis and metabolism. Of interest, the inner part of mitochondria-the mitochondrial matrix-contains a circular molecule of DNA (mtDNA) characterised by its own transcriptional machinery. As with genomic DNA, mtDNA may also undergo nucleotide mutations that have been shown to be responsible for mitochondrial dysfunction. During physiological aging, the mitochondrial membrane potential declines and associates with enhanced mitophagy to avoid the accumulation of damaged organelles. Moreover, if the dysfunctional mitochondria are not properly cleared, this could lead to cellular dysfunction and subsequent development of several comorbidities such as cardiovascular diseases (CVDs), diabetes, respiratory and cardiovascular diseases as well as inflammatory disorders and psychiatric diseases. As reported for genomic DNA, mtDNA is also amenable to chemical modifications, namely DNA methylation. Changes in mtDNA methylation have shown to be associated with altered transcriptional programs and mitochondrial dysfunction during aging. In addition, other epigenetic signals have been observed in mitochondria, in particular the interaction between mtDNA methylation and non-coding RNAs. Mitoepigenetic modifications are also involved in the pathogenesis of CVDs where oxygen chain disruption, mitochondrial fission, and ROS formation alter cardiac energy metabolism leading to hypertrophy, hypertension, heart failure and ischemia/reperfusion injury. In the present review, we summarize current evidence on the growing importance of epigenetic changes as modulator of mitochondrial function in aging. A better understanding of the mitochondrial epigenetic landscape may pave the way for personalized therapies to prevent age-related diseases.

2.
Hum Mol Genet ; 31(12): 2010-2022, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35015850

RESUMO

Frataxin (FXN) deficiency is responsible for Friedreich's ataxia (FRDA) in which, besides the characteristic features of spinocerebellar ataxia, two thirds of patients develop hypertrophic cardiomyopathy that often progresses to heart failure and premature death. Different mechanisms might underlie FRDA pathogenesis. Among them, the role of miRNAs deserves investigations. We carried out an miRNA PCR-array analysis of plasma samples of early-, intermediate- and late-onset FRDA groups, defining a set of 30 differentially expressed miRNAs. Hsa-miR223-3p is the only miRNA shared between the three patient groups and appears upregulated in all of them. The up-regulation of hsa-miR223-3p was further validated in all enrolled patients (n = 37, Fc = +2.3; P < 0.0001). Using a receiver operating characteristic curve analysis, we quantified the predictive value of circulating hsa-miR223-3p for FRDA, obtaining an area under the ROC curve value of 0.835 (P < 0.0001) for all patients. Interestingly, we found a significant positive correlation between hsa-miR223-3p expression and cardiac parameters in typical FRDA patients (onset < 25 years). Moreover, a significant negative correlation between hsa-miR223-3p expression and HAX-1 (HCLS1-associated protein X-1) at mRNA and protein level was observed in all FRDA patients. In silico analyses suggested HAX-1 as a target gene of hsa-miR223-3p. Accordingly, we report that HAX-1 is negatively regulated by hsa-miR223-3p in cardiomyocytes (AC16) and neurons (SH-SY5Y), which are critically affected cell types in FRDA. This study describes for the first time the association between hsa-miR223-3p and HAX-1 expression in FRDA, thus supporting a potential role of this microRNA as non-invasive epigenetic biomarker for FRDA.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Ataxia de Friedreich , MicroRNAs , Neuroblastoma , Proteínas Adaptadoras de Transdução de Sinal/genética , Ataxia de Friedreich/patologia , Humanos , MicroRNAs/sangue , Miócitos Cardíacos/metabolismo , Neuroblastoma/metabolismo , RNA Mensageiro/genética
3.
Genet Med ; 24(1): 29-40, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34906452

RESUMO

PURPOSE: This study aimed to unravel the genetic factors underlying missing heritability in spinocerebellar ataxia type 17 (SCA17) caused by polyglutamine-encoding CAG/CAA repeat expansions in the TBP gene. Alleles with >49 CAG/CAA repeats are fully penetrant. Most patients, however, carry intermediate TBP41-49 alleles that show incomplete penetrance. METHODS: Using next-generation sequencing approaches, we investigated 40 SCA17/TBP41-54 index patients, their affected (n = 55) and unaffected (n = 51) relatives, and a cohort of patients with ataxia (n = 292). RESULTS: All except 1 (30/31) of the index cases with TBP41-46 alleles carried a heterozygous pathogenic variant in the STUB1 gene associated with spinocerebellar ataxias SCAR16 (autosomal recessive) and SCA48 (autosomal dominant). No STUB1 variant was found in patients carrying TBP47-54 alleles. TBP41-46 expansions and STUB1 variants cosegregate in all affected family members, whereas the presence of either TBP41-46 expansions or STUB1 variants individually was never associated with the disease. CONCLUSION: Our data reveal an unexpected genetic interaction between STUB1 and TBP in the pathogenesis of SCA17 and raise questions on the existence of SCA48 as a monogenic disease with crucial implications for diagnosis and counseling. They provide a convincing explanation for the incomplete penetrance of intermediate TBP alleles and demonstrate a dual inheritance pattern for SCA17, which is a monogenic dominant disorder for TBP≥47 alleles and a digenic TBP/STUB1 disease (SCA17-DI) for intermediate expansions.


Assuntos
Peptídeos , Ataxias Espinocerebelares , Proteína de Ligação a TATA-Box , Ubiquitina-Proteína Ligases , Humanos , Penetrância , Peptídeos/genética , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Proteína de Ligação a TATA-Box/genética , Expansão das Repetições de Trinucleotídeos/genética , Ubiquitina-Proteína Ligases/genética
4.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200325

RESUMO

The SARS-CoV-2 infection determines the COVID-19 syndrome characterized, in the worst cases, by severe respiratory distress, pulmonary and cardiac fibrosis, inflammatory cytokine release, and immunosuppression. This condition has led to the death of about 2.15% of the total infected world population so far. Among survivors, the presence of the so-called persistent post-COVID-19 syndrome (PPCS) is a common finding. In COVID-19 survivors, PPCS presents one or more symptoms: fatigue, dyspnea, memory loss, sleep disorders, and difficulty concentrating. In this study, a cohort of 117 COVID-19 survivors (post-COVID-19) and 144 non-infected volunteers (COVID-19-free) was analyzed using pyrosequencing of defined CpG islands previously identified as suitable for biological age determination. The results show a consistent biological age increase in the post-COVID-19 population, determining a DeltaAge acceleration of 10.45 ± 7.29 years (+5.25 years above the range of normality) compared with 3.68 ± 8.17 years for the COVID-19-free population (p < 0.0001). A significant telomere shortening parallels this finding in the post-COVID-19 cohort compared with COVID-19-free subjects (p < 0.0001). Additionally, ACE2 expression was decreased in post-COVID-19 patients, compared with the COVID-19-free population, while DPP-4 did not change. In light of these observations, we hypothesize that some epigenetic alterations are associated with the post-COVID-19 condition, particularly in younger patients (< 60 years).


Assuntos
Envelhecimento/genética , COVID-19/genética , COVID-19/fisiopatologia , Ilhas de CpG , Encurtamento do Telômero , Telômero/metabolismo , Adulto , Idoso , Enzima de Conversão de Angiotensina 2/sangue , Biomarcadores , COVID-19/complicações , COVID-19/etiologia , Metilação de DNA , Dipeptidil Peptidase 4/sangue , Epigenômica , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Interações entre Hospedeiro e Microrganismos , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Sobreviventes , Síndrome de COVID-19 Pós-Aguda
5.
Int J Mol Sci ; 21(21)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33121118

RESUMO

The WHO estimated around 41 million deaths worldwide each year for age-related non-communicable chronic diseases. Hence, developing strategies to control the accumulation of cell senescence in living organisms and the overall aging process is an urgently needed problem of social relevance. During aging, many biological processes are altered, which globally induce the dysfunction of the whole organism. Cell senescence is one of the causes of this modification. Nowadays, several drugs approved for anticancer therapy have been repurposed to treat senescence, and others are under scrutiny in vitro and in vivo to establish their senomorphic or senolytic properties. In some cases, this research led to a significant increase in cell survival or to a prolonged lifespan in animal models, at least. Senomorphics can act to interfere with a specific pathway in order to restore the appropriate cellular function, preserve viability, and to prolong the lifespan. On the other hand, senolytics induce apoptosis in senescent cells allowing the remaining non-senescent population to preserve or restore tissue function. A large number of research articles and reviews recently addressed this topic. Herein, we would like to focus attention on those chemical agents with senomorphic or senolytic properties that perspectively, according to literature, suggest a potential application as senotherapeutics for chronic diseases.


Assuntos
Antineoplásicos/uso terapêutico , Doença Crônica/tratamento farmacológico , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Senescência Celular , Doença Crônica/mortalidade , Ensaios Clínicos como Assunto , Saúde Global , Humanos , Neoplasias/mortalidade , Transdução de Sinais/efeitos dos fármacos
6.
Neurol Sci ; 41(6): 1475-1482, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31940111

RESUMO

BACKGROUND: Huntington disease (HD) and spinocerebellar ataxia type 1-2-17 (SCA1-2-17) are adult-onset autosomal dominant diseases, caused by triplet repeat expansions in the HTT, ATXN1, ATXN2, and TBP genes. Alleles with a repeat number just below the pathological threshold are associated with reduced penetrance and meiotic instability and are defined as intermediate alleles (IAs). OBJECTIVES: We aimed to determine the frequencies of IAs in healthy Italian subjects and to compare the proportion of the IAs with the prevalence of the respective diseases. METHODS: We analyzed the triplet repeat size in HTT, ATXN1, ATXN2, and TBP genes in the DNA samples from 729 consecutive adult healthy Italian subjects. RESULTS: IAs associated with reduced penetrance were found in ATXN2 gene (1 subject, 0.1%) and TBP gene (0.82%). IAs at risk for meiotic instability were found in HTT (5.3%) and ATXN2 genes (2.7%). In ATXN1, we found a low percentage of IAs (0.4%). Alleles lacking the common CAT interruption within the CAG sequence were also rare (0.3%). CONCLUSIONS: The high frequencies of IAs in HTT and ATXN2 genes suggest a correlation with the prevalence of the diseases in our population and support the hypothesis that IAs could represent a reservoir of new pathological expansions. On the opposite, ATXN1-IA were very rare in respect to the prevalence of SCA1 in our country, and TBP- IA were more frequent than expected, suggesting that other mechanisms could influence the occurrence of novel pathological expansions.


Assuntos
Frequência do Gene/genética , Doença de Huntington/genética , Peptídeos/genética , Ataxias Espinocerebelares/genética , Repetições de Trinucleotídeos/genética , Adulto , Idoso , Alelos , Ataxina-1/genética , Ataxina-2/genética , Feminino , Humanos , Proteína Huntingtina/genética , Doença de Huntington/epidemiologia , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Prevalência , Ataxias Espinocerebelares/epidemiologia , Proteína de Ligação a TATA-Box/genética
7.
Front Physiol ; 10: 369, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191327

RESUMO

Non-coding RNAs are pivotal for many cellular functions, such as splicing, gene regulation, chromosome structure, and hormone-like activity. Here, we will report about the biology and the general molecular mechanisms associated with long non-coding RNAs (lncRNAs), a class of >200 nucleotides-long ribonucleic acid sequences, and their role in chronic non-transmissible diseases. In particular, we will summarize knowledge about some of the best-characterized lncRNAs, such as H19 and MALAT1, and how they regulate carbohydrate and lipid metabolism as well as protein synthesis and degradation. Evidence is discussed about how lncRNAs expression might affect cellular and organismal metabolism and whether their modulation could provide ground for the development of innovative treatments.

8.
Int J Mol Sci ; 19(10)2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30304806

RESUMO

A large body of evidence reports about the positive effects of physical activity in pathophysiological conditions associated with aging. Physical exercise, alone or in combination with other medical therapies, unquestionably causes reduction of symptoms in chronic non-transmissible diseases often leading to significant amelioration or complete healing. The molecular basis of this exciting outcome-however, remain largely obscure. Epigenetics, exploring at the interface between environmental signals and the remodeling of chromatin structure, promises to shed light on this intriguing matter possibly contributing to the identification of novel therapeutic targets. In this review, we shall focalize on the role of sirtuins (Sirts) a class III histone deacetylases (HDACs), which function has been frequently associated, often with a controversial role, to the pathogenesis of aging-associated pathophysiological conditions, including cancer, cardiovascular, muscular, neurodegenerative, bones and respiratory diseases. Numerous studies, in fact, demonstrate that Sirt-dependent pathways are activated upon physical and cognitive exercises linking mitochondrial function, DNA structure remodeling and gene expression regulation to designed medical therapies leading to tangible beneficial outcomes. However, in similar conditions, other studies assign to sirtuins a negative pathophysiological role. In spite of this controversial effect, it is doubtless that studying sirtuins in chronic diseases might lead to an unprecedented improvement of life quality in the elderly.


Assuntos
Suscetibilidade a Doenças , Reabilitação , Sirtuínas/genética , Sirtuínas/metabolismo , Animais , Reabilitação Cardíaca , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Metilação de DNA , Epigênese Genética , Exercício Físico , Regulação da Expressão Gênica , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Neoplasias/etiologia , Neoplasias/metabolismo , Neoplasias/patologia , Reabilitação/métodos
9.
Neurosci Lett ; 678: 37-42, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29715545

RESUMO

Multiple system atrophy (MSA) is an adult onset, progressive, neurodegenerative disorder of unknown etiology characterized by autonomic dysfunction, parkinsonism (MSA-P) and cerebellar ataxia (MSA-C). The phenotypic spectrum may present overlapping features with other neurodegenerative diseases, particularly the autosomal dominant inherited polyglutamine disorders. To investigate the possible contribution of CAG expansions in the MSA phenotype, we analyzed the triplet repeat length in the autosomal dominant causative genes for spinocerebellar ataxia (SCA) type 1, 2, 3, 6, 7, 17, dentatorubral-pallidoluysian atrophy (DRPLA) and Huntington disease (HD) in a cohort of 246 Italian MSA patients. As comparison, 223 controls were also analyzed. The alleles were classified on the basis of CAG repeat length as "normal", "intermediate" or "expanded" according to literature. The MSA patients (101 men/145 women) had a mean age at onset of 58 years and a mean age at genetic testing of 63 years. MSA-C patients had significantly younger age at onset and at examination in comparison to MSA-P (p < 0.0001). We identified a SCA1 intermediate allele in a MSA-C subject (36 CAG), a SCA2 intermediate allele in a MSA-P patient (31 CAG), and a pathologically expanded SCA2 allele (36 CAG) in a patient initially misdiagnosed as MSA-C. No intermediate or expanded SCA alleles were detected in controls. The distribution of CAG repeat length was similar among groups except for SCA1 gene that showed a higher percentage of longer normal alleles in MSA-C as compared to MSA-P and controls (p < 0.0001). This study supports the utility of polyQ genetic testing in the differential diagnosis of MSA, and may suggest a possible role of SCA1 repeat length as risk factor for MSA-C. SCA1 and SCA2 genetic screening is recommended in MSA Italian patients.


Assuntos
Ataxina-1/genética , Ataxina-2/genética , Predisposição Genética para Doença , Atrofia de Múltiplos Sistemas/genética , Expansão das Repetições de Trinucleotídeos , Idoso , Feminino , Frequência do Gene , Testes Genéticos , Genótipo , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Peptídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA