RESUMO
Bengamide E is a bioactive natural product that was isolated from Jaspidae sponges by Crews and co-workers in 1989. It displays a wide range of biological activities, including antitumor, antibiotic, and anthelmintic properties. With the aim of investigating the structural feature essential for their activity, several total syntheses of Bengamide E and its analogues have been reported in the literature. Nevertheless, no synthesis of the stereoisomer with modification of its configuration at C-4 carbon has been reported so far. Here, we report the first total synthesis of the 4-epi-Bengamide E. Key reactions in the synthesis include a chemoenzimatic desymmetrization of biobased starting materials and a diastereoselective Passerini reaction using a chiral, enantiomerically pure aldehyde, and a lysine-derived novel isocyanide.
Assuntos
Produtos Biológicos , Estereoisomerismo , Estrutura Molecular , Animais , Produtos Biológicos/síntese química , Produtos Biológicos/químicaRESUMO
The Ugi four-component reaction employing naturally occurred ferulic acid (FA) is proposed as a convenient method to synthesize feruloyl tertiary amides. Applying this strategy, a peptoid-like derivative of ferulic acid (FEF77) containing 2 additional hydroxy-substituted aryl groups, has been synthesized. The influence of the configuration of the double bond of ferulic acid and feruloyl amide on the antioxidant activity has been investigated thanks to light-mediated isomerization studies. At the cellular level, both FA, trans and cis isomers of FEF77 were able to protect human endothelial cord vein (HECV) cells from the oxidative damage induced by exposure to hydrogen peroxide, as measured by cell viability and ROS production assays. Moreover, in steatotic FaO rat hepatoma cells, an in vitro model resembling non-alcoholic fatty liver disease (NAFLD), the molecules exhibited a lipid-lowering effect, which, along with the antioxidant properties, points to consider feruloyl amides for further investigations in a therapeutic perspective.
Assuntos
Amidas/farmacologia , Antioxidantes/fisiologia , Ácidos Cumáricos/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/química , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismoRESUMO
In this study natural-based complex polyphenols, obtained through a smart synthetic approach, have been evaluated for their ability to inhibit the formation of Aß42 oligomers, the most toxic species causing synaptic dysfunction, neuroinflammation, and neuronal death leading to the onset and progression of Alzheimer's disease. In vitro neurotoxicity tests on primary hippocampal neurons have been employed to select nontoxic candidates. Solution NMR and molecular docking studies have been performed to clarify the interaction mechanism of Aß42 with the synthesized polyphenol derivatives, and highlight the sterical and chemical requirements important for their antiaggregating activity. NMR results indicated that the selected polyphenolic compounds target Aß42 oligomeric species. Combined NMR and docking studies indicated that the Aß42 central hydrophobic core, namely, the 17-31 region, is the main interaction site. The length of the peptidomimetic scaffold and the presence of a guaiacol moiety were identified as important requirements for the antiaggregating activity. In vivo experiments on an Aß42 oligomer-induced acute mouse model highlighted that the most promising polyphenolic derivative (PP04) inhibits detrimental effects of Aß42 oligomers on memory and glial cell activation. NMR kinetic studies showed that PP04 is endowed with the chemical features of true inhibitors, strongly affecting both the Aß42 nucleation and growth rates, thus representing a promising candidate to be further developed into an effective drug against neurodegenerative diseases of the amyloid type.
Assuntos
Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/toxicidade , Modelos Animais de Doenças , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Fragmentos de Peptídeos/toxicidade , Polifenóis/uso terapêutico , Doença Aguda , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Animais , Células Cultivadas , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular/métodos , Fragmentos de Peptídeos/química , Polifenóis/química , Estrutura Secundária de ProteínaRESUMO
While plant polyphenols possess a variety of biological properties, exploration of chemical diversity around them is still problematic. Here, an example of application of the Ugi multicomponent reaction to the combinatorial assembly of artificial, yet "natural-like", polyphenols is presented. The synthesized compounds represent a second-generation library directed to the inhibition of ß-amyloid protein aggregation. Chiral enantiopure compounds, and polyphenol-ß-lactam hybrids have been prepared too. The biochemical assays have highlighted the importance of the key pharmacophores in these compounds. A lead for inhibition of aggregation of truncated protein AßpE3-42 was selected.
Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/química , Polifenóis/química , Polifenóis/farmacologia , Doença de Alzheimer , Fenômenos Químicos , Técnicas de Química Sintética , Humanos , Estrutura Molecular , Polifenóis/síntese química , Agregados Proteicos/efeitos dos fármacos , Análise EspectralRESUMO
A new and short fragment-based approach towards artificial (but "natural-based") complex polyphenols has been developed, exploiting the Ugi multicomponent reaction of phenol-containing simple substrates. The resulting library of compounds has been tested for its capacity to inhibit ß-amyloid protein aggregation, as a possible strategy to develop new chemical entities to be used as prevention or therapy for Alzheimer's disease. Some of the members of this library have demonstrated, in thioflavin assays, a highly promising activity in inhibiting aggregation for two ß-amyloid peptides: Aß1-42 and the truncated AßpE3-42.
Assuntos
Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química , Peptidomiméticos/síntese química , Peptidomiméticos/farmacologia , Polifenóis/química , Multimerização Proteica/efeitos dos fármacos , Cinética , Peptidomiméticos/química , Estrutura Quaternária de ProteínaRESUMO
A hydrolytically stable mimetic of the tumour antigen GM(3) lactone is used to decorate multivalent scaffolds. Two of them positively interfere on melanoma cell adhesion, migration and resistance to apoptosis (anoikis). Notably, their ability to hamper melanoma-cells adhesion and reduce the metastatic potential is enhanced when the two scaffolds, presenting a different shape, are used in combination.
Assuntos
Materiais Biomiméticos/farmacologia , Movimento Celular/efeitos dos fármacos , Gangliosídeo G(M3)/análogos & derivados , Melanoma/patologia , Apoptose/efeitos dos fármacos , Materiais Biomiméticos/química , Adesão Celular/efeitos dos fármacos , Gangliosídeo G(M3)/química , Humanos , Melanoma/metabolismoRESUMO
Tetra- and octavalent sialoside clusters were prepared in good yields exploiting for the first time the multiple copper-catalyzed cycloaddition of a propargyl thiosialoside with calix[4]arene polyazides. The cycloadducts featured the hydrolytically stable carbon-sulfur bond at the anomeric position and the 1,4-disubstituted triazole ring as the spacer between the sialic acid moieties and the platform. It was demonstrated that these unnatural motifs did not hamper the desired biological activity of the sialoclusters. In fact, they were able to inhibit, at submillimolar concentrations, the hemagglutination and the viral infectivity mediated both by BK and influenza A viruses.