Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cancers (Basel) ; 15(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37345155

RESUMO

BACKGROUND: Vestibular schwannomas (VS) are benign intracranial tumors caused by loss of function of the merlin tumor suppressor. We tested three hypotheses related to radiation, hearing loss (HL), and VS cell survival: (1) radiation causes HL by injuring auditory hair cells (AHC), (2) fractionation reduces radiation-induced HL, and (3) single fraction and equivalent appropriately dosed multi-fractions are equally effective at controlling VS growth. We investigated the effects of single fraction and hypofractionated radiation on hearing thresholds in rats, cell death pathways in rat cochleae, and viability of human merlin-deficient Schwann cells (MD-SC). METHODS: Adult rats received cochlear irradiation with single fraction (0 to 18 Gray [Gy]) or hypofractionated radiation. Auditory brainstem response (ABR) testing was performed for 24 weeks. AHC viabilities were determined using immunohistochemistry. Neonatal rat cochleae were harvested after irradiation, and gene- and cell-based assays were conducted. MD-SCs were irradiated, and viability assays and immunofluorescence for DNA damage and cell cycle markers were performed. RESULTS: Radiation caused dose-dependent and progressive HL in rats and AHC losses by promoting expression of apoptosis-associated genes and proteins. When compared to 12 Gy single fraction, hypofractionation caused smaller ABR threshold and pure tone average shifts and was more effective at reducing MD-SC viability. CONCLUSIONS: Investigations into the mechanisms of radiation ototoxicity and VS radiobiology will help determine optimal radiation regimens and identify potential therapies to mitigate radiation-induced HL and improve VS tumor control.

2.
Cell Transplant ; 31: 9636897221123515, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36169034

RESUMO

One promising strategy in cell therapies for Parkinson's disease (PD) is to harness a patient's own cells to provide neuroprotection in areas of the brain affected by neurodegeneration. No treatment exists to replace cells in the brain. Thus, our goal has been to support sick neurons and slow neurodegeneration by transplanting living repair tissue from the peripheral nervous system into the substantia nigra of those with PD. Our group has pioneered the transplantation of transection-activated sural nerve fascicles into the brain of human subjects with PD. Our experience in sural nerve transplantation has supported the safety and feasibility of this approach. As part of a paradigm to assess the reparative properties of human sural nerve following a transection injury, we collected nerve tissue approximately 2 weeks after sural nerve transection for immunoassays from 15 participants, and collected samples from two additional participants for single nuclei RNA sequencing. We quantified the expression of key neuroprotective and select anti-apoptotic genes along with their corresponding protein levels using immunoassays. The single nuclei data clustered into 10 distinctive groups defined on the basis of previously published cell type-specific genes. Transection-induced reparative peripheral nerve tissue showed RNA expression of neuroprotective factors and anti-apoptotic factors across multiple cell types after nerve injury induction. Key proteins of interest (BDNF, GDNF, beta-NGF, PDGFB, and VEGF) were upregulated in reparative tissue. These results provide insight on this repair tissue's utility as a neuroprotective cell therapy.


Assuntos
Fator de Crescimento Neural , Doença de Parkinson , Fator Neurotrófico Derivado do Encéfalo , Terapia Baseada em Transplante de Células e Tecidos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Humanos , Doença de Parkinson/terapia , Proteínas Proto-Oncogênicas c-sis , RNA , Fator A de Crescimento do Endotélio Vascular
3.
J Neurol Surg B Skull Base ; 83(3): 228-236, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35769808

RESUMO

Objectives Vestibular schwannomas (VS) are intracranial tumors, which are caused by NF2 gene mutations that lead to loss of merlin protein. A treatment for VS is stereotactic radiosurgery, a form of radiation. To better understand the radiobiology of VS and radiation toxicity to adjacent structures, our main objectives were (1) investigate effects of single fraction (SF) radiation on viability, cytotoxicity, and apoptosis in normal Schwann cells (SCs) and merlin-deficient Schwann cells (MD-SCs) in vitro, and (2) analyze expression of double strand DNA breaks (γ-H2AX) and DNA repair protein Rad51 following irradiation. Study Design This is a basic science study. Setting This study is conducted in a research laboratory. Participants Patients did not participate in this study. Main Outcome Measures In irradiated normal SCs and MD-SCs (0-18 Gy), we measured (1) viability, cytotoxicity, and apoptosis using cell-based assays, and (2) percentage of cells with γ-H2AX and Rad51 on immunofluorescence. Results A high percentage of irradiated MD-SCs expressed γ-H2AX, which may explain the dose-dependent losses in viability in rodent and human cell lines. In comparison, the viabilities of normal SCs were only compromised at higher doses of radiation (>12 Gy, human SCs), which may be related to less Rad51 repair. There were no further reductions in viability in human MD-SCs beyond 9 Gy, suggesting that <9 Gy may be insufficient to initiate maximal tumor control. Conclusion The MD-SCs are more susceptible to radiation than normal SCs, in part through differential expression of γ-H2AX and Rad51. Understanding the radiobiology of MD-SCs and normal SCs is important for optimizing radiation protocols to maximize tumor control while limiting radiation toxicity in VS patients.

4.
Biol Proced Online ; 23(1): 22, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772336

RESUMO

BACKGROUND: Heregulin is a ligand for the protooncogene product ErbB/HER that acts as  a key mitogenic factor for human Schwann cells (hSCs). Heregulin is required for sustained hSC growth in vitro but must be thoroughly removed before cell collection for transplantation due to potential safety concerns. The goal of this study was to develop simple cell-based assays to assess the effectiveness of heregulin addition to and removal from aliquots of hSC culture medium. These bioassays were based on the capacity of a ß1-heregulin peptide to elicit ErbB/HER receptor signaling in adherent ErbB2+/ErbB3+ cells. RESULTS: Western blotting was used to measure the activity of three different ß1-heregulin/ErbB-activated kinases (ErbB3/HER3, ERK/MAPK and Akt/PKB) using phospho-specific antibodies against key activating residues. The duration, dose-dependency and specificity of ß1-heregulin-initiated kinase phosphorylation were investigated, and controls were implemented for assay optimization and reproducibility to detect ß1-heregulin activity in the nanomolar range. Results from these assays showed that the culture medium from transplantable hSCs elicited no detectable activation of the aforementioned kinases in independent rounds of testing, indicating that the implemented measures can ensure that the final hSC product is devoid of bioactive ß1-heregulin molecules prior to transplantation. CONCLUSIONS: These assays may be valuable to detect impurities such as undefined soluble factors or factors for which other biochemical or biological assays are not yet available. Our workflow can be modified as necessary to determine the presence of ErbB/HER, ERK, and Akt activators other than ß1-heregulin using native samples, such as fresh isolates from cell- or tissue extracts in addition to culture medium.

5.
Cells ; 9(8)2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781699

RESUMO

Schwann cell (SC) cultures from experimental animals and human donors can be prepared using nearly any type of nerve at any stage of maturation to render stage- and patient-specific populations. Methods to isolate, purify, expand in number, and differentiate SCs from adult, postnatal and embryonic sources are efficient and reproducible as these have resulted from accumulated refinements introduced over many decades of work. Albeit some exceptions, SCs can be passaged extensively while maintaining their normal proliferation and differentiation controls. Due to their lineage commitment and strong resistance to tumorigenic transformation, SCs are safe for use in therapeutic approaches in the peripheral and central nervous systems. This review summarizes the evolution of work that led to the robust technologies used today in SC culturing along with the main features of the primary and expanded SCs that make them irreplaceable models to understand SC biology in health and disease. Traditional and emerging approaches in SC culture are discussed in light of their prospective applications. Lastly, some basic assumptions in vitro SC models are identified in an attempt to uncover the combined value of old and new trends in culture protocols and the cellular products that are derived.


Assuntos
Técnicas de Cultura de Células , Células de Schwann/citologia , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Humanos
6.
Glia ; 68(4): 797-810, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32027424

RESUMO

Human Schwann cells (hSCs) can be isolated directly from peripheral nerve and cultured using methods similar to those used for SCs from other species. Yet, important interspecies differences are revealed when the primary or expanded hSCs are compared to their nonhuman counterparts. This review addresses the special properties of nerve-derived hSCs that have resulted to date from both in vitro studies and in vivo research on cell transplantation in animal models and human subjects. A consensus has yet to emerge about the essential attributes of cultured normal hSCs. Thus, an emphasis is placed on the importance of validating hSC cultures by means of purity, identity, and biological activity to reliably use them as in vitro models of the SC phenotype and cell therapy products for injury repair. Combining traditional immunological methods, high-resolution omics approaches, and assorted cell-based assays is so far the best approach to unequivocally identify hSC populations obtained by direct isolation or derivation from stem cells. Special considerations are required to understand and manage the variability and heterogeneity proper of donor batches, as well as to evaluate risk factors. This is particularly important if the intended use of the hSCs is implantation in the human body, diagnosis of disease, or drug testing aimed at targeting any aspect of SC function in human patients. To conclude, in view of their unique properties, new concepts and methods are needed to better understand the biology of hSCs and exploit their full potential in basic science and regenerative medicine.


Assuntos
Técnicas de Cultura de Células , Transplante de Células , Células de Schwann/fisiologia , Células Cultivadas , Humanos , Células de Schwann/metabolismo
7.
Life Sci Alliance ; 3(1)2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31882444

RESUMO

Epigenetic variation reflects the impact of a dynamic environment on chromatin. However, it remains elusive how environmental factors influence epigenetic events. Here, we show that G protein-coupled receptors (GPCRs) alter H3K4 methylation via oscillatory intracellular cAMP. Activation of Gs-coupled receptors caused a rapid decrease of H3K4me3 by elevating cAMP, whereas stimulation of Gi-coupled receptors increased H3K4me3 by diminishing cAMP. H3K4me3 gradually recovered towards baseline levels after the removal of GPCR ligands, indicating that H3K4me3 oscillates in tandem with GPCR activation. cAMP increased intracellular labile Fe(II), the cofactor for histone demethylases, through a non-canonical cAMP target-Rap guanine nucleotide exchange factor-2 (RapGEF2), which subsequently enhanced endosome acidification and Fe(II) release from the endosome via vacuolar H+-ATPase assembly. Removing Fe(III) from the media blocked intracellular Fe(II) elevation after stimulation of Gs-coupled receptors. Iron chelators and inhibition of KDM5 demethylases abolished cAMP-mediated H3K4me3 demethylation. Taken together, these results suggest a novel function of cAMP signaling in modulating histone demethylation through labile Fe(II).


Assuntos
AMP Cíclico/análogos & derivados , Desmetilação/efeitos dos fármacos , Compostos Ferrosos/metabolismo , Histonas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tionucleotídeos/metabolismo , Animais , Células Cultivadas , AMP Cíclico/metabolismo , AMP Cíclico/farmacologia , Inativação Gênica , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Ligantes , Metilação/efeitos dos fármacos , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/genética , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Células de Schwann , Tionucleotídeos/farmacologia , Transfecção
8.
Otol Neurotol ; 39(8): 1053-1059, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30001282

RESUMO

HYPOTHESIS: Merlin-deficient Schwann cells (MD-SC) and primary human vestibular schwannoma (VS) cells exhibit selective uptake of sodium-fluorescein (SF), allowing for fluorescent detection and improved visualization of tumor cells, when compared with Schwann cells (SC). BACKGROUND: SF is a fluorescent compound used for fluorescence-guided resection of gliomas. The utility of SF for VS surgery has not been assessed. METHODS: Mouse MD-SCs and rat SCs were cultured on 96-well plates at different cell densities and treated with SF at several drug concentrations and durations. Relative fluorescence units (RFU) were measured using a fluorometer to determine optimal treatment parameters in vitro. Subsequently, a four-point Likert scale for fluorescence visualization of pelleted cells was created and validated. Blinded observers rated SF-treated primary human VS and SC cultures, which were developed from deidentified specimens obtained from live and cadaveric donors, respectively. RESULTS: In contrast to SCs that showed low levels of fluorescence, MD-SCs demonstrated dose-dependent increases in RFUs when treated with incremental dosages of SF as well as longer treatment and fluorescent excitation times. In addition, RFUs were higher at greater MD-SC densities. The Likert scale for fluorescence visualization was validated using nine blinded observers and there were excellent inter- and intrarater reliabilities (intraclass coefficients of 0.989 and >0.858, respectively). Using the Likert scale, human VS treated with SF received higher scores than human SCs (p < 0.001). CONCLUSION: Mouse MD-SC and human VS cells demonstrate preferential uptake of SF when compared with normal primary SCs. Observers detected differences in fluorescence using the validated Likert scale. Further investigations into the utility of SF-guidance in VS surgery are warranted.


Assuntos
Neurofibromina 2/metabolismo , Neuroma Acústico/patologia , Células de Schwann/metabolismo , Animais , Células Cultivadas , Fluoresceína , Humanos , Camundongos , Neuroma Acústico/metabolismo , Ratos
9.
Methods Mol Biol ; 1739: 213-232, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29546710

RESUMO

This chapter describes protocols to establish simplified in vitro assays of Schwann cell (SC) differentiation in the absence of neurons. The assays are based on the capacity of isolated primary SCs to increase or decrease the expression of myelination-associated genes in response to the presence or absence of cell permeable analogs of cyclic adenosine monophosphate (cAMP). No special conditions of media or substrates beyond the administration or removal of cAMP analogs are required to obtain a synchronous response on differentiation and dedifferentiation. The assays are cost-effective and far easier to implement than traditional myelinating SC-neuron cultures. They are scalable to a variety of plate formats suited for downstream experimentation and analysis. These cell-based assays can be used as drug discovery platforms for the evaluation of novel agents controlling the onset, maintenance, and reversal of the differentiated state using any typical adherent SC population.


Assuntos
Neurônios/citologia , Células de Schwann/citologia , Animais , Diferenciação Celular , Células Cultivadas , AMP Cíclico/metabolismo , Bainha de Mielina/metabolismo , Neurônios/metabolismo , Ratos , Células de Schwann/metabolismo
10.
Transgenic Res ; 27(2): 135-153, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29453733

RESUMO

Bone marrow mononuclear cells (BMMC) constitute a heterogeneous population with potential to promote tissue regeneration. For this reason, this cell fraction has recently become a therapeutic alternative to mesenchymal stem cells, as culture is not required and phenotypic transformations can be hence avoided. In this work, and in order to attain long-lasting cell labeling and study longer survival times, we used BMMC isolated from adult transgenic rats expressing GFP to reproduce our wild type model and evaluate their remyelination ability in a reversible model of Wallerian degeneration. RT-PCR and flow cytometry analysis confirmed that cells isolated from the transgenic strain exhibited similar expression levels of markers specific to multipotent progenitors (CD34, CD90 and CD105) and Schwann cells (MPZ, MBP, S100ß and p75NTR) compared to wild type BMMC. BMMC expressing GFP retained their migration capacity, arriving exclusively at the injured nerve. Most importantly, and as detected through long-lasting cell tracking, some of these BMMC settled in the demyelinated area, mingled with endogenous cells, underwent phenotypic changes and colocalized with Schwann cell markers MBP and S100ß. Also worth highlighting, transgenic BMMC replicated wild type BMMC effects in terms of MBP organization and levels. On the basis of these findings, BMMC isolated from transgenic animals constitute a useful tool to evaluate their role in peripheral nervous system demyelination-remyelination and the underlying mechanisms.


Assuntos
Transplante de Medula Óssea , Rastreamento de Células/métodos , Proteínas de Fluorescência Verde/genética , Remielinização/genética , Animais , Animais Geneticamente Modificados , Células da Medula Óssea/ultraestrutura , Linhagem da Célula/genética , Citometria de Fluxo , Regulação da Expressão Gênica/genética , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Ratos , Células de Schwann/metabolismo , Células de Schwann/ultraestrutura , Transgenes/genética , Degeneração Walleriana/genética , Degeneração Walleriana/patologia
11.
Mol Neurobiol ; 55(8): 6637-6660, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29327207

RESUMO

This study comprehensively addresses the phenotype, function, and whole transcriptome of primary human and rodent Schwann cells (SCs) and highlights key species-specific features beyond the expected donor variability that account for the differential ability of human SCs to proliferate, differentiate, and interact with axons in vitro. Contrary to rat SCs, human SCs were insensitive to mitogenic factors other than neuregulin and presented phenotypic variants at various stages of differentiation, along with a mixture of proliferating and senescent cells, under optimal growth-promoting conditions. The responses of human SCs to cAMP-induced differentiation featured morphological changes and cell cycle exit without a concomitant increase in myelin-related proteins and lipids. Human SCs efficiently extended processes along those of other SCs (human or rat) but failed to do so when placed in co-culture with sensory neurons under conditions supportive of myelination. Indeed, axon contact-dependent human SC alignment, proliferation, and differentiation were not observed and could not be overcome by growth factor supplementation. Strikingly, RNA-seq data revealed that ~ 44 of the transcriptome contained differentially expressed genes in human and rat SCs. A bioinformatics approach further highlighted that representative SC-specific transcripts encoding myelin-related and axon growth-promoting proteins were significantly affected and that a deficient expression of key transducers of cAMP and adhesion signaling explained the fairly limited potential of human SCs to differentiate and respond to axonal cues. These results confirmed the significance of combining traditional bioassays and high-resolution genomics methods to characterize human SCs and identify genes predictive of cell function and therapeutic value.


Assuntos
Bioensaio/métodos , Células de Schwann/citologia , Análise de Sequência de RNA/métodos , Adolescente , Adulto , Idoso , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Criança , Colforsina/farmacologia , AMP Cíclico/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Mitógenos/farmacologia , Bainha de Mielina/genética , Neurregulinas/farmacologia , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Endogâmicos F344 , Células de Schwann/efeitos dos fármacos , Células de Schwann/ultraestrutura , Transcriptoma/genética , Adulto Jovem
12.
Elife ; 62017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29239726

RESUMO

It is widely accepted that cAMP regulates gene transcription principally by activating the protein kinase A (PKA)-targeted transcription factors. Here, we show that cAMP enhances the generation of 5-hydroxymethylcytosine (5hmC) in multiple cell types. 5hmC is converted from 5-methylcytosine (5mC) by Tet methylcytosine dioxygenases, for which Fe(II) is an essential cofactor. The promotion of 5hmC was mediated by a prompt increase of the intracellular labile Fe(II) pool (LIP). cAMP enhanced the acidification of endosomes for Fe(II) release to the LIP likely through RapGEF2. The effect of cAMP on Fe(II) and 5hmC was confirmed by adenylate cyclase activators, phosphodiesterase inhibitors, and most notably by stimulation of G protein-coupled receptors (GPCR). The transcriptomic changes caused by cAMP occurred in concert with 5hmC elevation in differentially transcribed genes. Collectively, these data show a previously unrecognized regulation of gene transcription by GPCR-cAMP signaling through augmentation of the intracellular labile Fe(II) pool and DNA hydroxymethylation.


Assuntos
5-Metilcitosina/análogos & derivados , AMP Cíclico/metabolismo , DNA/metabolismo , Ferro/metabolismo , Metilação , Transdução de Sinais , 5-Metilcitosina/metabolismo , Animais , Células Cultivadas , Regulação da Expressão Gênica , Ratos , Células de Schwann/metabolismo
13.
Glia ; 65(6): 864-882, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28233923

RESUMO

Mature Schwann cells (SCs) retain dedifferentiation potential throughout adulthood. Still, how dedifferentiation occurs remains uncertain. Results from a variety of cell-based assays using in vitro cultured cAMP-differentiated and myelinating SCs revealed the existence of a novel dedifferentiating activity expressed on the surface of dorsal root ganglion (DRG) axons. This activity had the capacity to prevent SC differentiation and elicit dedifferentiation through direct SC-axon contact. Evidence is provided showing that a rapid loss of myelinating SC markers concomitant to proliferation occurred even in the presence of elevated cAMP, a signal that is required to drive and maintain a differentiated state. The dedifferentiating activity was a membrane-bound protein found exclusively in DRG neurons, as judged by its subcellular partitioning, sensitivity to proteolytic degradation and cell-type specificity, and remained active even after disruption of cellular organization. It differed from the membrane-anchored neuregulin-1 isoforms that are responsible for axon contact-induced SC proliferation and exerted its action independently of mitogenic signaling emanating from receptor tyrosine kinases and mitogen-activated protein kinases such as ERK and JNK. Interestingly, dedifferentiation occurred without concomitant changes in the expression of Krox-20, a transcriptional enhancer of myelination, and c-Jun, an inhibitor of myelination. In sum, our data indicated the existence of cell surface axon-derived signals that override pro-differentiating cues, drive dedifferentiation and allow SCs to proliferate in response to axonal mitogens. This axonal signal may negatively regulate myelination at the onset or reversal of the differentiated state. GLIA 2017;65:851-863.


Assuntos
Axônios/fisiologia , Desdiferenciação Celular/fisiologia , Células de Schwann/fisiologia , Animais , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Células Cultivadas , Técnicas de Cocultura , AMP Cíclico/metabolismo , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , Células HEK293 , Humanos , MAP Quinase Quinase 4/metabolismo , Camundongos , Neuregulina-1/metabolismo , Ratos , Células de Schwann/citologia , Nervo Isquiático/citologia , Nervo Isquiático/fisiologia
14.
PLoS One ; 10(2): e0116948, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25705874

RESUMO

Isolated Schwann cells (SCs) respond to cAMP elevation by adopting a differentiated post-mitotic state that exhibits high levels of Krox-20, a transcriptional enhancer of myelination, and mature SC markers such as the myelin lipid galactocerebroside (O1). To address how cAMP controls myelination, we performed a series of cell culture experiments which compared the differentiating responses of isolated and axon-related SCs to cAMP analogs and ascorbate, a known inducer of axon ensheathment, basal lamina formation and myelination. In axon-related SCs, cAMP induced the expression of Krox-20 and O1 without a concomitant increase in the expression of myelin basic protein (MBP) and without promoting axon ensheathment, collagen synthesis or basal lamina assembly. When cAMP was provided together with ascorbate, a dramatic enhancement of MBP expression occurred, indicating that cAMP primes SCs to form myelin only under conditions supportive of basal lamina formation. Experiments using a combination of cell permeable cAMP analogs and type-selective adenylyl cyclase (AC) agonists and antagonists revealed that selective transmembrane AC (tmAC) activation with forskolin was not sufficient for full SC differentiation and that the attainment of an O1 positive state also relied on the activity of the soluble AC (sAC), a bicarbonate sensor that is insensitive to forskolin and GPCR activation. Pharmacological and immunological evidence indicated that SCs expressed sAC and that sAC activity was required for morphological differentiation and the expression of myelin markers such as O1 and protein zero. To conclude, our data indicates that cAMP did not directly drive myelination but rather the transition into an O1 positive state, which is perhaps the most critical cAMP-dependent rate limiting step for the onset of myelination. The temporally restricted role of cAMP in inducing differentiation independently of basal lamina formation provides a clear example of the uncoupling of signals controlling differentiation and myelination in SCs.


Assuntos
Diferenciação Celular/fisiologia , AMP Cíclico/metabolismo , Bainha de Mielina/metabolismo , Células de Schwann/metabolismo , Transdução de Sinais/fisiologia , Animais , Axônios , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Colforsina/farmacologia , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Bainha de Mielina/efeitos dos fármacos , Ratos , Células de Schwann/citologia , Células de Schwann/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
15.
PLoS One ; 8(12): e82354, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24349260

RESUMO

In Schwann cells (SCs), cyclic adenosine monophosphate (cAMP) not only induces differentiation into a myelinating SC-related phenotype, but also synergistically enhances the mitogenic action of growth factors such as neuregulin. To better understand the molecular mechanism by which cAMP exerts these apparently contradictory functions, we investigated the role of the two main effectors of cAMP, protein kinase A (PKA) and the exchange protein activated by cAMP (EPAC), on the proliferation and differentiation of both isolated and axon-related SCs. For these studies, a variety of PKA and EPAC agonists and antagonists were used, including pathway-selective analogs of cAMP and pharmacological inhibitors. Our studies indicated that the activity of PKA rather than EPAC was required for the adjuvant effect of cAMP on S-phase entry, whereas the activity of EPAC rather than PKA was required for SC differentiation and myelin formation. Even though selective EPAC activation had an overall anti-proliferative effect in SCs, it failed to drive the expression of Krox-20, a master regulator of myelination, and that of myelin-specific proteins and lipids, suggesting that EPAC activation was insufficient to drive a full differentiating response. Interestingly, inhibition of EPAC activity resulted in a drastic impairment of SC differentiation and myelin formation but not Krox-20 expression, which indicates an independent mechanism of Krox-20 regulation in response to cAMP. In conclusion, our data supports the idea that the outcome of cAMP signaling in SCs depends on the particular set of effectors activated. Whereas the mitogenic action of cAMP relies exclusively on PKA activity, the differentiating action of cAMP requires a PKA-independent (non-canonical) cAMP-specific pathway that is partially transduced by EPAC.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/farmacologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células de Schwann/citologia , Células de Schwann/enzimologia , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Proliferação de Células/efeitos dos fármacos , Separação Celular , Células Cultivadas , Colforsina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Ativação Enzimática/efeitos dos fármacos , Gânglios Espinais/citologia , Hidrazonas/farmacologia , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Isoxazóis/farmacologia , Modelos Biológicos , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Ratos , Células de Schwann/efeitos dos fármacos
16.
J Biol Chem ; 285(40): 31024-36, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20634285

RESUMO

Myelinating Schwann cells (SCs) are highly plastic cells that are able to dedifferentiate and re-enter the cell cycle. However, the molecular signals controlling dedifferentiation are not completely understood. Because a connection between mitogenic signaling and myelin loss has been suggested, we investigated the role of cAMP, a strong inducer of the myelinating phenotype, and mitogenic factors activating receptor tyrosine kinases (RTKs) on SC dedifferentiation. We herein provide evidence indicating that cAMP was required to not only initiate but also maintain a state of differentiation because SCs rapidly dedifferentiated and became competent to resume proliferation upon the removal of cAMP stimulation. Surprisingly, isolated SCs could undergo multiple cycles of differentiation and dedifferentiation upon cAMP addition and removal, respectively, in the absence of mitogenic factors and without entering the cell cycle. Conversely, the activation of RTKs and the ERK cascade by a variety of growth factors, including neuregulin, was not sufficient to initiate dedifferentiation in the presence of cAMP. Importantly, a reduction of cAMP triggered dedifferentiation through a mechanism that required JNK, rather than ERK, activity and an induction of the expression of c-Jun, a transcriptional inhibitor of myelination. In summary, the reversible transition from an undifferentiated to a myelinating state was dependent on cAMP but independent of RTK signaling and cell cycle progression, further indicating that dedifferentiation and proliferation are uncoupled and differentially regulated events in SCs.


Assuntos
Desdiferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , AMP Cíclico/farmacologia , MAP Quinase Quinase 4/metabolismo , Células de Schwann/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Desdiferenciação Celular/fisiologia , Células Cultivadas , AMP Cíclico/metabolismo , Neurregulinas/farmacologia , Proteínas Proto-Oncogênicas c-jun/metabolismo , Ratos , Células de Schwann/citologia , Transdução de Sinais/fisiologia
17.
Glia ; 57(9): 947-61, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19053056

RESUMO

The expression of myelination-associated genes (MGs) can be induced by cyclic adenosine monophosphate (cAMP) elevation in isolated Schwann cells (SCs). To further understand the effect of known SC mitogens in the regulation of SC differentiation, we studied the response of SCs isolated from adult nerves to combined cAMP, growth factors, including neuregulin, and serum. In adult SCs, the induction of MGs by cAMP coincided with the loss of genes expressed in non-myelin-forming SCs and with a change in cell morphology from a bipolar to an expanded epithelial-like shape. Prolonged treatment with high doses of cAMP-stimulating agents, as well as low cell density, was required for the induction of SC differentiation. Stimulation with serum, neuregulin alone, or other growth factors including PDGF, IGF and FGF, increased SC proliferation but did not induce the expression of MGs or the associated morphological change. Most importantly, when these factors were administered in combination with cAMP-stimulating agents, SC proliferation was synergistically increased without reducing the differentiating activity of cAMP. Even though the initiation of DNA synthesis and the induction of differentiation were mostly incompatible events in individual cells, SCs were able to differentiate under conditions that also supported active proliferation. Overall, the results indicate that in the absence of neurons, cAMP can trigger SC re-differentiation concurrently with, but independently of, growth factor signaling.


Assuntos
AMP Cíclico/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Bainha de Mielina/genética , Células de Schwann/fisiologia , Animais , Contagem de Células , Diferenciação Celular , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Cocultura , DNA/biossíntese , Fatores de Crescimento de Fibroblastos/metabolismo , Gânglios Espinais/fisiologia , Expressão Gênica , Neurregulinas/metabolismo , Neurônios/fisiologia , Fenótipo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Ratos , Células de Schwann/citologia , Soro/metabolismo
18.
J Biol Chem ; 283(49): 34087-100, 2008 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-18799465

RESUMO

In Schwann cells (SCs), cyclic adenosine monophosphate (cAMP) enhances the action of neuregulin, the most potent known mitogen for SCs, by synergistically increasing the activation of two crucial signaling pathways: ERK and Akt. However, the underlying mechanism of cross-talk between neuregulin and cAMP signaling remains mostly undefined. Here, we report that the activation of protein kinase A (PKA), but not that of exchange protein activated by cAMP (EPAC), enhances S-phase entry of SCs by synergistically enhancing the ligand-dependent tyrosine phosphorylation/activation of the neuregulin co-receptor, ErbB2-ErbB3. The role of PKA in neuregulin-ErbB signaling was confirmed using PKA inhibitors, pathway-selective cAMP analogs, and natural ligands stimulating PKA activity in SCs, such as adenosine and epinephrine. Two basic observations defined the synergistic action of PKA as "gating" for neuregulin-ErbB signaling: 1) the activation of PKA was not sufficient to induce S-phase entry or the activation of either ErbB2 or ErbB3; and 2) the presence of neuregulin was strictly required to ignite ErbB activation and thereby ERK and Akt signaling. However, PKA directly phosphorylated ErbB2 on Thr-686, a highly conserved intracellular regulatory site that was required for the PKA-mediated synergistic enhancement of neuregulin-induced ErbB2-ErbB3 activation and proliferation in SCs. The gating action of PKA on neuregulin-induced ErbB2-ErbB3 activation has important biological significance, because it insures signal amplification into the ERK and Akt pathways without compromising either the neuregulin dependence or the high specificity of ErbB signaling pathways.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Regulação Enzimológica da Expressão Gênica , Proteínas do Tecido Nervoso/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Células de Schwann/metabolismo , Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Epinefrina/metabolismo , Fibroblastos/metabolismo , Humanos , Dados de Sequência Molecular , Neuregulina-1 , Homologia de Sequência de Aminoácidos
19.
J Lipid Res ; 49(1): 153-61, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17901466

RESUMO

Myelin in the mammalian nervous system has a high concentration of galactolipids [galactosylceramide (GalCer) and sulfatide] with 2-hydroxy fatty acids. We recently reported that fatty acid 2-hydroxylase (FA2H), encoded by the FA2H gene, is the major fatty acid 2-hydroxylase in the mouse brain. In this report, we show that FA2H also plays a major role in the formation of 2-hydroxy galactolipids in the peripheral nervous system. FA2H mRNA and FA2H activity in the neonatal rat sciatic nerve increased rapidly during developmental myelination. The contents of 2-hydroxy fatty acids were approximately 5% of total galactolipid fatty acids at 4 days of age and increased to 60% in GalCer and to 35% in sulfatides at 60 days of age. The chain length of galactolipid fatty acids also increased significantly during myelination. FA2H expression in cultured rat Schwann cells was highly increased in response to dibutyryl cyclic AMP, which stimulates Schwann cell differentiation and upregulates myelin genes, such as UDP-galactose:ceramide galactosyltransferase and protein zero. These observations indicate that FA2H is a myelination-associated gene. FA2H-directed RNA interference (RNAi) by short-hairpin RNA expression resulted in a reduction of cellular 2-hydroxy fatty acids and 2-hydroxy GalCer in D6P2T Schwannoma cells, providing direct evidence that FA2H-dependent fatty acid 2-hydroxylation is required for the formation of 2-hydroxy galactolipids in peripheral nerve myelin. Interestingly, FA2H-directed RNAi enhanced the migration of D6P2T cells, suggesting that, in addition to their structural role in myelin, 2-hydroxy lipids may greatly influence the migratory properties of Schwann cells.


Assuntos
Galactolipídeos/metabolismo , Oxigenases de Função Mista/metabolismo , Bainha de Mielina/metabolismo , Células de Schwann/metabolismo , Nervo Isquiático/metabolismo , Animais , Células Cultivadas , Oxigenases de Função Mista/genética , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley
20.
Glia ; 53(6): 649-59, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16470843

RESUMO

The elevation of intracellular cAMP synergistically enhances the neuregulin-dependent proliferation of cultured Schwann cells (SCs); however, the mechanism by which this occurs has not been completely defined. To better understand this mechanism, we investigated the effect of cAMP on the activation of the extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3-K)-Akt (PKB) pathways by heregulin, a member of the neuregulin family. Using primary cultures of adult SCs, we demonstrated that the adenylyl cyclase activator, forskolin, enhanced heregulin-dependent SC proliferation by reducing the time required for S-phase entry. When cAMP levels were increased, using either forskolin or a cell permeable analogue of cAMP, the heregulin-induced phosphorylation of ERK was converted from transient to sustained and the heregulin-induced phosphorylation of Akt was synergistically increased. Consistent with these observations, studies in which inhibitors of MEK, the upstream stimulating ERK kinase, and PI3-K were administered at different times following the onset of stimulation indicated that sustained high levels of both MEK/ERK and PI3-K/Akt activity before S-phase initiation were essential for S-phase entry. Overall, these novel results indicate that in neuregulin-stimulated SCs the activation of cAMP-mediated pathways accelerates G1-S progression by prolonging ERK activation and concurrently enhancing Akt activation.


Assuntos
Ciclo Celular/fisiologia , AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteína Oncogênica v-akt/metabolismo , Células de Schwann/enzimologia , Adenilil Ciclases/efeitos dos fármacos , Adenilil Ciclases/metabolismo , Animais , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colforsina/farmacologia , AMP Cíclico/farmacologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/efeitos dos fármacos , Fase G1/efeitos dos fármacos , Fase G1/fisiologia , Genes cdc/efeitos dos fármacos , Genes cdc/fisiologia , Humanos , Líquido Intracelular/efeitos dos fármacos , Líquido Intracelular/enzimologia , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/metabolismo , Proteínas do Tecido Nervoso/efeitos dos fármacos , Neuregulina-1 , Proteína Oncogênica v-akt/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Fase S/efeitos dos fármacos , Fase S/fisiologia , Células de Schwann/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA