Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Dyn ; 250(2): 191-236, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32940375

RESUMO

BACKGROUND: The neural crest is a transient embryonic stem cell population. Hypoxia inducible factor (HIF)-2α is associated with neural crest stem cell appearance and aggressiveness in tumors. However, little is known about its role in normal neural crest development. RESULTS: Here, we show that HIF-2α is expressed in trunk neural crest cells of human, murine, and avian embryos. Knockdown as well as overexpression of HIF-2α in vivo causes developmental delays, induces proliferation, and self-renewal capacity of neural crest cells while decreasing the proportion of neural crest cells that migrate ventrally to sympathoadrenal sites. Reflecting the in vivo phenotype, transcriptome changes after loss of HIF-2α reveal enrichment of genes associated with cancer, invasion, epithelial-to-mesenchymal transition, and growth arrest. CONCLUSIONS: Taken together, these results suggest that expression levels of HIF-2α must be strictly controlled during normal trunk neural crest development and that dysregulated levels affects several important features connected to stemness, migration, and development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Crista Neural/embriologia , Animais , Fator de Transcrição CDX2/metabolismo , Sistemas CRISPR-Cas , Embrião de Galinha , Transição Epitelial-Mesenquimal , Regulação da Expressão Gênica no Desenvolvimento , Fator 1-beta Nuclear de Hepatócito/metabolismo , Humanos , Crista Neural/metabolismo , Fatores de Transcrição SOX9/metabolismo
2.
Biomed Mater ; 15(6): 065020, 2020 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-32650328

RESUMO

Growth factors promote plasticity in injured brain and improve impaired functions. For clinical application, efficient approaches for growth factor delivery into the brain are necessary. Poly(ester amide) (PEA)-derived microspheres (MS) could serve as vehicles due to their thermal and mechanical properties, biocompatibility and biodegradability. Vascular endothelial growth factor (VEGF) exerts both vascular and neuronal actions, making it suitable to stimulate post-stroke recovery. Here, PEA (composed of adipic acid, L-phenyl-alanine and 1,4-butanediol) MS were loaded with VEGF and injected intracerebrally in mice subjected to cortical stroke. Loaded MS provided sustained release of VEGF in vitro and, after injection, biologically active VEGF was released long-term, as evidenced by high VEGF immunoreactivity, increased VEGF tissue levels, and higher vessel density and more NG2+ cells in injured hemisphere of animals with VEGF-loaded as compared to non-loaded MS. Loaded MS gave rise to more rapid recovery of neurological score. Both loaded and non-loaded MS induced improvement in neurological score and adhesive removal test, probably due to anti-inflammatory action. In summary, grafted PEA MS can act as efficient vehicles, with anti-inflammatory action, for long-term delivery of growth factors into injured brain. Our data suggest PEA MS as a new tool for neurorestorative approaches with therapeutic potential.


Assuntos
Amidas/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Microesferas , Poliésteres/química , Acidente Vascular Cerebral/terapia , Implantes Absorvíveis , Adipatos/química , Animais , Anti-Inflamatórios/química , Comportamento Animal , Materiais Biocompatíveis/química , Butileno Glicóis/química , Sistemas de Liberação de Medicamentos , Infarto da Artéria Cerebral Média/cirurgia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Tamanho da Partícula , Fenilalanina/química , Polímeros/química , Proteínas Recombinantes/química , Suínos , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Stem Cells Transl Med ; 9(11): 1365-1377, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32602201

RESUMO

Several neurodegenerative diseases cause loss of cortical neurons, leading to sensory, motor, and cognitive impairments. Studies in different animal models have raised the possibility that transplantation of human cortical neuronal progenitors, generated from pluripotent stem cells, might be developed into a novel therapeutic strategy for disorders affecting cerebral cortex. For example, we have shown that human long-term neuroepithelial-like stem (lt-NES) cell-derived cortical neurons, produced from induced pluripotent stem cells and transplanted into stroke-injured adult rat cortex, improve neurological deficits and establish both afferent and efferent morphological and functional connections with host cortical neurons. So far, all studies with human pluripotent stem cell-derived neurons have been carried out using xenotransplantation in animal models. Whether these neurons can integrate also into adult human brain circuitry is unknown. Here, we show that cortically fated lt-NES cells, which are able to form functional synaptic networks in cell culture, differentiate to mature, layer-specific cortical neurons when transplanted ex vivo onto organotypic cultures of adult human cortex. The grafted neurons are functional and establish both afferent and efferent synapses with adult human cortical neurons in the slices as evidenced by immuno-electron microscopy, rabies virus retrograde monosynaptic tracing, and whole-cell patch-clamp recordings. Our findings provide the first evidence that pluripotent stem cell-derived neurons can integrate into adult host neural networks also in a human-to-human grafting situation, thereby supporting their potential future clinical use to promote recovery by neuronal replacement in the patient's diseased brain.


Assuntos
Células-Tronco Pluripotentes Induzidas/transplante , Neurônios/metabolismo , Animais , Diferenciação Celular , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
4.
Stem Cells ; 38(9): 1175-1187, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32469107

RESUMO

Neurogenesis, the production of new neurons from neural stem cells, dramatically decreases during aging concomitantly with increased inflammation both systemically and in the brain. However, the precise role of inflammation and whether local or systemic factors drive the neurogenic decline during aging is poorly understood. Here, we identify CXCR5/5/CXCL13 signaling as a novel regulator of neurogenesis in the aged brain. The chemokine Cxcl13 was found to be upregulated in the brain during aging. Loss of its receptor, Cxcr5, led to increased proliferation and decreased numbers of neuroblasts in the aged subventricular zone (SVZ), together with accumulation of neuroblasts in the rostral migratory stream and olfactory bulb (OB), without increasing the amount of new mature neurons in the OB. The effect on proliferation and migration was specific to neuroblasts and likely mediated through increased levels of systemic IL-6 and local Cxcl12 expression in the SVZ. Our study raises the possibility of a new mechanism by which interplay between systemic and local alterations in inflammation regulates neurogenesis during aging.


Assuntos
Envelhecimento/fisiologia , Encéfalo/fisiologia , Movimento Celular , Neurônios/citologia , Receptores CXCR5/metabolismo , Animais , Contagem de Células , Proliferação de Células , Citocinas/metabolismo , Feminino , Mutação em Linhagem Germinativa/genética , Ventrículos Laterais/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Neurogênese , Neurônios/metabolismo , Bulbo Olfatório/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(16): 9094-9100, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32253308

RESUMO

Stem cell transplantation can improve behavioral recovery after stroke in animal models but whether stem cell-derived neurons become functionally integrated into stroke-injured brain circuitry is poorly understood. Here we show that intracortically grafted human induced pluripotent stem (iPS) cell-derived cortical neurons send widespread axonal projections to both hemispheres of rats with ischemic lesions in the cerebral cortex. Using rabies virus-based transsynaptic tracing, we find that at 6 mo after transplantation, host neurons in the contralateral somatosensory cortex receive monosynaptic inputs from grafted neurons. Immunoelectron microscopy demonstrates myelination of the graft-derived axons in the corpus callosum and that their terminals form excitatory, glutamatergic synapses on host cortical neurons. We show that the stroke-induced asymmetry in a sensorimotor (cylinder) test is reversed by transplantation. Light-induced inhibition of halorhodopsin-expressing, grafted neurons does not recreate the impairment, indicating that its reversal is not due to neuronal activity in the graft. However, we find bilateral decrease of motor performance in the cylinder test after light-induced inhibition of either grafted or endogenous halorhodopsin-expressing cortical neurons, located in the same area, and after inhibition of endogenous halorhodopsin-expressing cortical neurons by exposure of their axons to light on the contralateral side. Our data indicate that activity in the grafted neurons, probably mediated through transcallosal connections to the contralateral hemisphere, is involved in maintaining normal motor function. This is an example of functional integration of efferent projections from grafted neurons into the stroke-affected brain's neural circuitry, which raises the possibility that such repair might be achievable also in humans affected by stroke.


Assuntos
Células-Tronco Pluripotentes Induzidas/fisiologia , Infarto da Artéria Cerebral Média/terapia , Atividade Motora/fisiologia , Neurônios/transplante , Córtex Somatossensorial/fisiopatologia , Potenciais de Ação/fisiologia , Animais , Técnicas de Observação do Comportamento , Comportamento Animal/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular , Modelos Animais de Doenças , Humanos , Infarto da Artéria Cerebral Média/etiologia , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Neurônios/fisiologia , Optogenética , Técnicas de Patch-Clamp , Ratos , Recuperação de Função Fisiológica , Córtex Somatossensorial/citologia , Córtex Somatossensorial/patologia
6.
Sci Rep ; 9(1): 4572, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872738

RESUMO

Mutations of Fused in sarcoma (FUS), a ribonucleoprotein involved in RNA metabolism, have been found associated with both familial and sporadic cases of amyotrophic lateral sclerosis (ALS). Notably, besides mutations in the coding sequence, also mutations into the 3' untranslated region, leading to increased levels of the wild-type protein, have been associated with neuronal death and ALS pathology, in ALS models and patients. The mechanistic link between altered FUS levels and ALS-related neurodegeneration is far to be elucidated, as well as the consequences of elevated FUS levels in the modulation of the inflammatory response sustained by glial cells, a well-recognized player in ALS progression. Here, we studied the effect of wild-type FUS overexpression on the responsiveness of mouse and human neural progenitor-derived astrocytes to a pro-inflammatory stimulus (IL1ß) used to mimic an inflammatory environment. We found that astrocytes with increased FUS levels were more sensitive to IL1ß, as shown by their enhanced expression of inflammatory genes, compared with control astrocytes. Moreover, astrocytes overexpressing FUS promoted neuronal cell death and pro-inflammatory microglia activation. We conclude that overexpression of wild-type FUS intrinsically affects astrocyte reactivity and drives their properties toward pro-inflammatory and neurotoxic functions, suggesting that a non-cell autonomous mechanism can support neurodegeneration in FUS-mutated animals and patients.


Assuntos
Astrócitos/metabolismo , Regulação da Expressão Gênica , Microglia/metabolismo , Neurônios/metabolismo , Proteína FUS de Ligação a RNA/genética , Animais , Biomarcadores , Morte Celular , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Humanos , Mediadores da Inflamação , Camundongos , Neurônios Motores/metabolismo , Mutação , Transporte Proteico , Proteína FUS de Ligação a RNA/metabolismo
7.
PLoS One ; 13(10): e0204688, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30307948

RESUMO

Human neurodegenerative disorders affect specific types of cortical neurons. Efficient protocols for the generation of such neurons for cell replacement, disease modeling and drug screening are highly warranted. Current methods for the production of cortical neurons from human embryonic stem (ES) cells are often time-consuming and inefficient, and the functional properties of the generated cells have been incompletely characterized. Here we have used transcription factor (TF) programming with the aim to induce rapid differentiation of human ES cells to layer-specific cortical neurons (hES-iNs). Three different combinations of TFs, NEUROGENIN 2 (NGN2) only, NGN2 plus Forebrain Embryonic Zinc Finger-Like Protein 2 (FEZF2), and NGN2 plus Special AT-Rich Sequence-Binding Protein 2 (SATB2), were delivered to human ES cells by lentiviral vectors. We observed only subtle differences between the TF combinations, which all gave rise to the formation of pyramidal-shaped cells, morphologically resembling adult human cortical neurons expressing cortical projection neuron (PN) markers and with mature electrophysiological properties. Using ex vivo transplantation to human organotypic cultures, we found that the hES-iNs could integrate into adult human cortical networks. We obtained no evidence that the hES-iNs had acquired a distinct cortical layer phenotype. Instead, our single-cell data showed that the hES-iNs, similar to fetal human cortical neurons, expressed both upper and deep layer cortical neuronal markers. Taken together, our findings provide evidence that TF programming can direct human ES cells towards cortical neurons but that the generated cells are transcriptionally profiled to generate both upper and deep layer cortical neurons. Therefore, most likely additional cues will be needed if these cells should adopt a specific cortical layer and area identity.


Assuntos
Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem Celular , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Vetores Genéticos , Células-Tronco Embrionárias Humanas/transplante , Humanos , Técnicas In Vitro , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Técnicas de Cultura de Órgãos , Células Piramidais/citologia , Células Piramidais/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fatores de Transcrição/genética
8.
Exp Neurol ; 297: 129-137, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28746827

RESUMO

Ischemic stroke, caused by middle cerebral artery occlusion, leads to long-lasting formation of new striatal neurons from neural stem/progenitor cells (NSPCs) in the subventricular zone (SVZ) of adult rodents. Concomitantly with this neurogenic response, SVZ exhibits activation of resident microglia and infiltrating monocytes. Here we show that depletion of circulating monocytes, using the anti-CCR2 antibody MC-21 during the first week after stroke, enhances striatal neurogenesis at one week post-insult, most likely by increasing short-term survival of the newly formed neuroblasts in the SVZ and adjacent striatum. Blocking monocyte recruitment did not alter the volume of the ischemic lesion but gave rise to reduced astrocyte activation in SVZ and adjacent striatum, which could contribute to the improved neuroblast survival. A similar decrease of astrocyte activation was found in and around human induced pluripotent stem cell (iPSC)-derived NSPCs transplanted into striatum at one week after stroke in monocyte-depleted mice. However, there was no effect on neurogenesis in the graft as determined 8weeks after implantation. Our findings demonstrate, for the first time, that a specific cellular component of the early inflammatory reaction in SVZ and adjacent striatum following stroke, i.e., infiltrating monocytes, compromises the short-term neurogenic response neurogenesis from endogenous NSPCs.


Assuntos
Encéfalo/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Monócitos/fisiologia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Acidente Vascular Cerebral/terapia , Fatores Etários , Animais , Encéfalo/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/transplante , Transplante de Células-Tronco/métodos , Acidente Vascular Cerebral/patologia
9.
J Neuroinflammation ; 14(1): 153, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28754163

RESUMO

BACKGROUND: Choroid plexus (CP) supports the entry of monocyte-derived macrophages (MDMs) to the central nervous system in animal models of traumatic brain injury, spinal cord injury, and Alzheimer's disease. Whether the CP is involved in the recruitment of MDMs to the injured brain after ischemic stroke is unknown. METHODS: Adult male C57BL/6 mice were subjected to focal cortical ischemia by permanent occlusion of the distal branch of the right middle cerebral artery. Choroid plexus tissues were collected and analyzed for Vcam1, Madcam1, Cx3cl1, Ccl2, Nt5e, and Ifnγ expression at different timepoints after stroke using qPCR. Changes of MDMs in CP and cerebrospinal fluid (CSF) at 1 day and 3 days after stroke were analyzed using flow cytometry. Infiltration of MDMs into CP and CSF were validated using ß-actin-GFP chimeric mice and Fgd5-CreERT2 x Lox-stop-lox-Tomato mice. CD115+ monocytes were isolated using a magnetic cell separation system from bone marrow of Cx3cr1-GFP or wild-type C57BL/6 donor mice. The freshly isolated monocytes or M2-like MDMs primed in vitro with IL4 and IL13 were stereotaxically injected into the lateral ventricle of stroke-affected mice to trace for their migration into ischemic hemisphere or to assess their effect on post-stroke recovery using open field, corridor, and active avoidance behavioral tests. RESULTS: We found that CP responded to cortical stroke by upregulation of gene expression for several possible mediators of MDM trafficking and, concomitantly, MDMs increased in CP and cerebrospinal fluid (CSF). We then confirmed that MDMs infiltrated from blood into CP and CSF after the insult using ß-actin-GFP chimeric mice and Fgd5-CreERT2 x Lox-stop-lox-Tomato mice. When MDMs were directly administered into CSF following stroke, they homed to the ischemic hemisphere. If they had been primed in vitro prior to their administration to become M2-like macrophages, they promoted post-stroke recovery of motor and cognitive function without influencing infarct volume. CONCLUSIONS: Our findings suggest the possibility that autologous transplantation of M2-like MDMs into CSF might be developed into a new strategy for promoting recovery also in patients with stroke.


Assuntos
Líquido Cefalorraquidiano/metabolismo , Plexo Corióideo/patologia , Macrófagos/patologia , Monócitos/patologia , Acidente Vascular Cerebral/patologia , Actinas/genética , Actinas/metabolismo , Animais , Antígenos CD/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Monócitos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Acidente Vascular Cerebral/fisiopatologia , Fatores de Tempo , Proteína da Zônula de Oclusão-1/metabolismo
10.
J Neurosci ; 36(15): 4182-95, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27076418

RESUMO

Stroke is a leading cause of disability and currently lacks effective therapy enabling long-term functional recovery. Ischemic brain injury causes local inflammation, which involves both activated resident microglia and infiltrating immune cells, including monocytes. Monocyte-derived macrophages (MDMs) exhibit a high degree of functional plasticity. Here, we determined the role of MDMs in long-term spontaneous functional recovery after middle cerebral artery occlusion in mice. Analyses by flow cytometry and immunocytochemistry revealed that monocytes home to the stroke-injured hemisphere., and that infiltration peaks 3 d after stroke. At day 7, half of the infiltrating MDMs exhibited a bias toward a proinflammatory phenotype and the other half toward an anti-inflammatory phenotype, but during the subsequent 2 weeks, MDMs with an anti-inflammatory phenotype dominated. Blocking monocyte recruitment using the anti-CCR2 antibody MC-21 during the first week after stroke abolished long-term behavioral recovery, as determined in corridor and staircase tests, and drastically decreased tissue expression of anti-inflammatory genes, including TGFß, CD163, and Ym1. Our results show that spontaneously recruited monocytes to the injured brain early after the insult contribute to long-term functional recovery after stroke. SIGNIFICANCE STATEMENT: For decades, any involvement of circulating immune cells in CNS repair was completely denied. Only over the past few years has involvement of monocyte-derived macrophages (MDMs) in CNS repair received appreciation. We show here, for the first time, that MDMs recruited to the injured brain early after ischemic stroke contribute to long-term spontaneous functional recovery through inflammation-resolving activity. Our data raise the possibility that inadequate recruitment of MDMs to the brain after stroke underlies the incomplete functional recovery seen in patients and that boosting homing of MDMs with an anti-inflammatory bias to the injured brain tissue may be a new therapeutic approach to promote long-term improvement after stroke.


Assuntos
Macrófagos , Monócitos , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/fisiopatologia , Animais , Anticorpos Bloqueadores/farmacologia , Antígenos CD/biossíntese , Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/biossíntese , Antígenos de Diferenciação Mielomonocítica/genética , Comportamento Animal/efeitos dos fármacos , Quimera , Lateralidade Funcional , Infarto da Artéria Cerebral Média/fisiopatologia , Inflamação/patologia , Lectinas/biossíntese , Lectinas/genética , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/patologia , Plasticidade Neuronal/fisiologia , Desempenho Psicomotor/efeitos dos fármacos , Receptores CCR2/antagonistas & inibidores , Receptores de Superfície Celular/biossíntese , Receptores de Superfície Celular/genética , Recuperação de Função Fisiológica/efeitos dos fármacos , Acidente Vascular Cerebral/patologia , Fator de Crescimento Transformador beta/biossíntese , Fator de Crescimento Transformador beta/genética , beta-N-Acetil-Hexosaminidases/biossíntese , beta-N-Acetil-Hexosaminidases/genética
11.
Neurobiol Dis ; 83: 1-15, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26299391

RESUMO

Ischemic stroke triggers neurogenesis from neural stem/progenitor cells (NSPCs) in the subventricular zone (SVZ) and migration of newly formed neuroblasts toward the damaged striatum where they differentiate to mature neurons. Whether it is the injury per se or the associated inflammation that gives rise to this endogenous neurogenic response is unknown. Here we showed that inflammation without corresponding neuronal loss caused by intrastriatal lipopolysaccharide (LPS) injection leads to striatal neurogenesis in rats comparable to that after a 30 min middle cerebral artery occlusion, as characterized by striatal DCX+ neuroblast recruitment and mature NeuN+/BrdU+ neuron formation. Using global gene expression analysis, changes in several factors that could potentially regulate striatal neurogenesis were identified in microglia sorted from SVZ and striatum of LPS-injected and stroke-subjected rats. Among the upregulated factors, one chemokine, CXCL13, was found to promote neuroblast migration from neonatal mouse SVZ explants in vitro. However, neuroblast migration to the striatum was not affected in constitutive CXCL13 receptor CXCR5(-/-) mice subjected to stroke. Infarct volume and pro-inflammatory M1 microglia/macrophage density were increased in CXCR5(-/-) mice, suggesting that microglia-derived CXCL13, acting through CXCR5, might be involved in neuroprotection following stroke. Our findings raise the possibility that the inflammation accompanying an ischemic insult is the major inducer of striatal neurogenesis after stroke.


Assuntos
Corpo Estriado/fisiopatologia , Encefalite/fisiopatologia , Infarto da Artéria Cerebral Média/fisiopatologia , Células-Tronco Neurais/fisiologia , Neurogênese , Neurônios/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Morte Celular , Movimento Celular/efeitos dos fármacos , Quimiocina CXCL13/farmacologia , Quimiocina CXCL13/fisiologia , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Proteína Duplacortina , Encefalite/induzido quimicamente , Encefalite/metabolismo , Expressão Gênica , Infarto da Artéria Cerebral Média/patologia , Mediadores da Inflamação/metabolismo , Ventrículos Laterais/citologia , Ventrículos Laterais/metabolismo , Ventrículos Laterais/fisiopatologia , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/citologia , Microglia/metabolismo , Neurônios/patologia , Ratos , Ratos Wistar , Receptores CXCR5/genética , Receptores CXCR5/fisiologia , Acidente Vascular Cerebral/patologia
12.
Restor Neurol Neurosci ; 32(4): 547-58, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24916776

RESUMO

PURPOSE: Induced pluripotent stem cells (iPSCs) improve behavior and form neurons after implantation into the stroke-injured adult rodent brain. How the aged brain responds to grafted iPSCs is unknown. We determined survival and differentiation of grafted human fibroblast-derived iPSCs and their ability to improve recovery in aged rats after stroke. METHODS: Twenty-four months old rats were subjected to 30 min distal middle cerebral artery occlusion causing neocortical damage. After 48 h, animals were transplanted intracortically with human iPSC-derived long-term neuroepithelial-like stem (hiPSC-lt-NES) cells. Controls were subjected to stroke and were vehicle-injected. RESULTS: Cell-grafted animals performed better than vehicle-injected recipients in cylinder test at 4 and 7 weeks. At 8 weeks, cell proliferation was low (0.7 %) and number of hiPSC-lt-NES cells corresponded to 49.2% of that of implanted cells. Transplanted cells expressed markers of neuroblasts and mature and GABAergic neurons. Cell-grafted rats exhibited less activated microglia/macrophages in injured cortex and neuronal loss was mitigated. CONCLUSIONS: Our study provides the first evidence that grafted human iPSCs survive, differentiate to neurons and ameliorate functional deficits in stroke-injured aged brain.


Assuntos
Envelhecimento , Lesões Encefálicas/cirurgia , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Pluripotentes Induzidas/transplante , Infarto da Artéria Cerebral Média/complicações , Recuperação de Função Fisiológica/fisiologia , Análise de Variância , Animais , Diferenciação Celular , Modelos Animais de Doenças , Proteínas do Domínio Duplacortina , Proteínas ELAV/metabolismo , Comportamento Exploratório/fisiologia , Humanos , Antígeno Ki-67/metabolismo , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Neuropeptídeos/metabolismo , Fosfopiruvato Hidratase/metabolismo , Ratos , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ácido gama-Aminobutírico/metabolismo
13.
Curr Stem Cell Res Ther ; 9(4): 338-46, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24654649

RESUMO

Clonogenic neural stem (NS) cell lines grown in adherent cultures have previously been established from embryonic stem cells and fetal and adult CNS in rodents and from human fetal brain and spinal cord. Here we describe the isolation of a new cell line from human fetal striatum (hNS cells). These cells showed properties of NS cells in vitro such as monolayer growth, high proliferation rate and expression of radial glia markers. The hNS cells expressed an early neuronal marker while being in the proliferative state. Under appropriate conditions, the hNS cells were efficiently differentiated to neurons, and after 4 weeks about 50% of the cells were ßIII tubulin positive. They also expressed the mature neuronal marker NeuN and markers of neuronal subtypes, GABA, calbindin, and DARPP32. After intrastriatal implantation into newborn rats, the hNS cells survived and many of them migrated outside the transplant core into the surrounding tissue. A high percentage of cells in the grafts expressed the neuroblast marker DCX, indicating their neurogenic potential, and some of the cells differentiated to NeuN+ mature neurons. The human fetal striatum-derived NS cell line described here should be a useful tool for studies on cell replacement strategies in models of the striatal neuronal loss occurring in Huntington's disease and stroke.


Assuntos
Células-Tronco Neurais/fisiologia , Neurogênese , Animais , Antígenos de Diferenciação/metabolismo , Proliferação de Células , Células Cultivadas , Corpo Estriado/citologia , Proteína Duplacortina , Feto/citologia , Humanos , Células-Tronco Neurais/transplante , Ratos Wistar
14.
Brain ; 136(Pt 12): 3561-77, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24148272

RESUMO

Stem cell-based approaches to restore function after stroke through replacement of dead neurons require the generation of specific neuronal subtypes. Loss of neurons in the cerebral cortex is a major cause of stroke-induced neurological deficits in adult humans. Reprogramming of adult human somatic cells to induced pluripotent stem cells is a novel approach to produce patient-specific cells for autologous transplantation. Whether such cells can be converted to functional cortical neurons that survive and give rise to behavioural recovery after transplantation in the stroke-injured cerebral cortex is not known. We have generated progenitors in vitro, expressing specific cortical markers and giving rise to functional neurons, from long-term self-renewing neuroepithelial-like stem cells, produced from adult human fibroblast-derived induced pluripotent stem cells. At 2 months after transplantation into the stroke-damaged rat cortex, the cortically fated cells showed less proliferation and more efficient conversion to mature neurons with morphological and immunohistochemical characteristics of a cortical phenotype and higher axonal projection density as compared with non-fated cells. Pyramidal morphology and localization of the cells expressing the cortex-specific marker TBR1 in a certain layered pattern provided further evidence supporting the cortical phenotype of the fated, grafted cells, and electrophysiological recordings demonstrated their functionality. Both fated and non-fated cell-transplanted groups showed bilateral recovery of the impaired function in the stepping test compared with vehicle-injected animals. The behavioural improvement at this early time point was most likely not due to neuronal replacement and reconstruction of circuitry. At 5 months after stroke in immunocompromised rats, there was no tumour formation and the grafted cells exhibited electrophysiological properties of mature neurons with evidence of integration in host circuitry. Our findings show, for the first time, that human skin-derived induced pluripotent stem cells can be differentiated to cortical neuronal progenitors, which survive, differentiate to functional neurons and improve neurological outcome after intracortical implantation in a rat stroke model.


Assuntos
Córtex Cerebral/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Infarto da Artéria Cerebral Média/cirurgia , Neurônios/fisiologia , Recuperação de Função Fisiológica/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/transplante , Modelos Animais de Doenças , Estimulação Elétrica , Glutaminase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Infarto da Artéria Cerebral Média/patologia , Neurônios/classificação , Neurônios/efeitos dos fármacos , Neurotransmissores/farmacologia , Técnicas de Patch-Clamp , Ratos , Ratos Nus , Ratos Sprague-Dawley
15.
Neurobiol Dis ; 52: 191-203, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23276704

RESUMO

Neural stem/progenitor cells (NSPCs) in subventricular zone (SVZ) produce new striatal neurons during several months after stroke, which may contribute to recovery. Intracerebral grafts of NSPCs can exert beneficial effects after stroke through neuronal replacement, trophic actions, neuroprotection, and modulation of inflammation. Here we have explored whether human fetal striatum-derived NSPC-grafts influence striatal neurogenesis and promote recovery in stroke-damaged brain. T cell-deficient rats were subjected to 1h middle cerebral artery occlusion (MCAO). Human fetal NSPCs or vehicle were implanted into ipsilateral striatum 48 h after MCAO, animals were assessed behaviorally, and perfused at 6 or 14 weeks. Grafted human NSPCs survived in all rats, and a subpopulation had differentiated to neuroblasts or mature neurons at 6 and 14 weeks. Numbers of proliferating cells in SVZ and new migrating neuroblasts and mature neurons were higher, and numbers of activated microglia/macrophages were lower in the ischemic striatum of NSPC-grafted compared to vehicle-injected group both at 6 and 14 weeks. A fraction of grafted NSPCs projected axons from striatum to globus pallidus. The NSPC-grafted rats showed improved functional recovery in stepping and cylinder tests from 6 and 12 weeks, respectively. Our data show, for the first time, that intrastriatal implants of human fetal NSPCs exert a long-term enhancement of several steps of striatal neurogensis after stroke. The grafts also suppress striatal inflammation and ameliorate neurological deficits. Our findings support the idea that combination of NSPC transplantation and stimulation of neurogenesis from endogenous NSPCs may become a valuable strategy for functional restoration after stroke.


Assuntos
Infarto da Artéria Cerebral Média/cirurgia , Destreza Motora/fisiologia , Células-Tronco Neurais/transplante , Neurogênese/fisiologia , Recuperação de Função Fisiológica/fisiologia , Animais , Movimento Celular/fisiologia , Corpo Estriado/fisiopatologia , Humanos , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Neurônios/fisiologia , Ratos , Ratos Nus , Caminhada/fisiologia
16.
Stem Cells ; 30(12): 2657-71, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22961761

RESUMO

Transplantation of neural stem cells (NSCs) is a novel strategy to restore function in the diseased brain, acting through multiple mechanisms, for example, neuronal replacement, neuroprotection, and modulation of inflammation. Whether transplanted NSCs can operate by fusing with microglial cells or mature neurons is largely unknown. Here, we have studied the interaction of a mouse embryonic stem cell-derived neural stem (NS) cell line with rat and mouse microglia and neurons in vitro and in vivo. We show that NS cells spontaneously fuse with cocultured cortical neurons, and that this process requires the presence of microglia. Our in vitro data indicate that the NS cells can first fuse with microglia and then with neurons. The fused NS/microglial cells express markers and retain genetic and functional characteristics of both parental cell types, being able to respond to microglia-specific stimuli (LPS and IL-4/IL-13) and to differentiate to neurons and astrocytes. The NS cells fuse with microglia, at least partly, through interaction between phosphatidylserine exposed on the surface of NS cells and CD36 receptor on microglia. Transplantation of NS cells into rodent cortex results in fusion with mature pyramidal neurons, which often carry two nuclei, a process probably mediated by microglia. The fusogenic role of microglia could be even more important after NSC transplantation into brains affected by neurodegenerative diseases associated with microglia activation. It remains to be elucidated how the occurrence of the fused cells will influence the functional outcome after NSC transplantation in the diseased brain.


Assuntos
Células-Tronco Embrionárias/citologia , Microglia/citologia , Células-Tronco Neurais/citologia , Neurônios/citologia , Animais , Diferenciação Celular/fisiologia , Fusão Celular , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Ratos , Ratos Wistar
17.
J Neurosci ; 32(15): 5151-64, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22496561

RESUMO

Ischemic stroke causes transient increase of neural stem and progenitor cell (NSPC) proliferation in the subventricular zone (SVZ), and migration of newly formed neuroblasts toward the damaged area where they mature to striatal neurons. The molecular mechanisms regulating this plastic response, probably involved in structural reorganization and functional recovery, are poorly understood. The adaptor protein LNK suppresses hematopoietic stem cell self-renewal, but its presence and role in the brain are poorly understood. Here we demonstrate that LNK is expressed in NSPCs in the adult mouse and human SVZ. Lnk(-/-) mice exhibited increased NSPC proliferation after stroke, but not in intact brain or following status epilepticus. Deletion of Lnk caused increased NSPC proliferation while overexpression decreased mitotic activity of these cells in vitro. We found that Lnk expression after stroke increased in SVZ through the transcription factors STAT1/3. LNK attenuated insulin-like growth factor 1 signaling by inhibition of AKT phosphorylation, resulting in reduced NSPC proliferation. Our findings identify LNK as a stroke-specific, endogenous negative regulator of NSPC proliferation, and suggest that LNK signaling is a novel mechanism influencing plastic responses in postischemic brain.


Assuntos
Isquemia Encefálica/patologia , Encéfalo/citologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Células-Tronco Neurais/fisiologia , Acidente Vascular Cerebral/patologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Antimetabólitos , Bromodesoxiuridina , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Imunoprecipitação da Cromatina , Eletroporação , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Infarto da Artéria Cerebral Média/patologia , Masculino , Proteínas de Membrana , Camundongos , Camundongos Knockout , Proteína Oncogênica v-akt/genética , Proteína Oncogênica v-akt/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Recuperação de Função Fisiológica , Retroviridae/genética , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/fisiologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/fisiologia , Fatores de Transcrição/metabolismo , Transfecção/métodos
18.
Stem Cells ; 30(6): 1120-33, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22495829

RESUMO

Reprogramming of adult human somatic cells to induced pluripotent stem cells (iPSCs) is a novel approach to produce patient-specific cells for autologous transplantation. Whether such cells survive long-term, differentiate to functional neurons, and induce recovery in the stroke-injured brain are unclear. We have transplanted long-term self-renewing neuroepithelial-like stem cells, generated from adult human fibroblast-derived iPSCs, into the stroke-damaged mouse and rat striatum or cortex. Recovery of forepaw movements was observed already at 1 week after transplantation. Improvement was most likely not due to neuronal replacement but was associated with increased vascular endothelial growth factor levels, probably enhancing endogenous plasticity. Transplanted cells stopped proliferating, could survive without forming tumors for at least 4 months, and differentiated to morphologically mature neurons of different subtypes. Neurons in intrastriatal grafts sent axonal projections to the globus pallidus. Grafted cells exhibited electrophysiological properties of mature neurons and received synaptic input from host neurons. Our study provides the first evidence that transplantation of human iPSC-derived cells is a safe and efficient approach to promote recovery after stroke and can be used to supply the injured brain with new neurons for replacement.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/transplante , Neurônios/citologia , Transplante de Células-Tronco/métodos , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/cirurgia , Idoso , Animais , Encéfalo/citologia , Encéfalo/patologia , Diferenciação Celular/fisiologia , Células Cultivadas , Feminino , Humanos , Imuno-Histoquímica , Camundongos , Ratos
19.
J Cereb Blood Flow Metab ; 31(1): 235-42, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20531461

RESUMO

Neural stem cells (NSCs) derived from human fetal striatum and transplanted as neurospheres survive in stroke-damaged striatum, migrate from the implantation site, and differentiate into mature neurons. Here, we investigated how various steps of neurogenesis are affected by intrastriatal transplantation of human NSCs at different time points after stroke and with different numbers of cells in each implant. Rats were subjected to middle cerebral artery occlusion and then received intrastriatal transplants of NSCs. Transplantation shortly after stroke (48 hours) resulted in better cell survival than did transplantation 6 weeks after stroke, but the delayed transplantation did not influence the magnitude of migration, neuronal differentiation, and cell proliferation in the grafts. Transplanting greater numbers of grafted NSCs did not result in a greater number of surviving cells or increased neuronal differentiation. A substantial number of activated microglia was observed at 48 hours after the insult in the injured striatum, but reached maximum levels 1 to 6 weeks after stroke. Our findings show that the best survival of grafted human NSCs in stroke-damaged brain requires optimum numbers of cells to be transplanted in the early poststroke phase, before the inflammatory response is established. These findings, therefore, have direct clinical implications.


Assuntos
Encéfalo/patologia , Células-Tronco Neurais/transplante , Acidente Vascular Cerebral/cirurgia , Animais , Contagem de Células , Diferenciação Celular/fisiologia , Proliferação de Células , Células-Tronco Embrionárias , Sobrevivência de Enxerto , Humanos , Imuno-Histoquímica , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/terapia , Masculino , Microglia/fisiologia , Neurogênese/fisiologia , Ratos , Ratos Wistar , Acidente Vascular Cerebral/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA