Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(2): 3835-3846, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35953752

RESUMO

Mercury (Hg) is a global pollutant of environmental and health concern; its methylated form, methylmercury (MeHg), is a potent neurotoxin. Sulfur-containing molecules play a role in MeHg production by microorganisms. While sulfides are considered to limit Hg methylation, sulfate and cysteine were shown to favor this process. However, these two forms can be endogenously converted by microorganisms into sulfide. Here, we explore the effect of sulfide (produced by the cell or supplied exogenously) on Hg methylation. For this purpose, Pseudodesulfovibrio hydrargyri BerOc1 was cultivated in non-sulfidogenic conditions with addition of cysteine and sulfide as well as in sulfidogenic conditions. We report that Hg methylation depends on sulfide concentration in the culture and the sulfides produced by cysteine degradation or sulfate reduction could affect the Hg methylation pattern. Hg methylation was independent of hgcA expression. Interestingly, MeHg production was maximal at 0.1-0.5 mM of sulfides. Besides, a strong positive correlation between MeHg in the extracellular medium and the increase of sulfide concentrations was observed, suggesting a facilitated MeHg export with sulfide and/or higher desorption from the cell. We suggest that sulfides (exogenous or endogenous) play a key role in controlling mercury methylation and should be considered when investigating the impact of Hg in natural environments.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Compostos de Metilmercúrio/metabolismo , Cisteína , Mercúrio/metabolismo , Sulfetos/metabolismo , Bactérias/metabolismo , Sulfatos/metabolismo
2.
Front Microbiol ; 11: 584715, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33154741

RESUMO

Microorganisms are key players in the transformation of mercury into neurotoxic methylmercury (MeHg). Nevertheless, this mechanism and the opposite MeHg demethylation remain poorly understood. Here, we explored the impact of inorganic mercury (IHg) and MeHg concentrations from 0.05 to 50 µM on the production and degradation of MeHg in two sulfate-reducing bacteria, Pseudodesulfovibrio hydrargyri BerOc1 able to methylate and demethylate mercury and Desulfovibrio desulfuricans G200 only able to demethylate MeHg. MeHg produced by BerOc1 increased with increasing IHg concentration with a maximum attained for 5 µM, and suggested a saturation of the process. MeHg was mainly found in the supernatant suggesting its export from the cell. Hg L3-edge High- Energy-Resolution-Fluorescence-Detected-X-ray-Absorption-Near-Edge-Structure spectroscopy (HERFD-XANES) identified MeHg produced by BerOc1 as MeHg-cysteine2 form. A dominant tetracoordinated ßHgS form was detected for BerOc1 exposed to the lowest IHg concentrations where methylation was detected. In contrast, at the highest exposure (50 µM) where Hg methylation was abolished, Hg species drastically changed suggesting a role of Hg speciation in the production of MeHg. The tetracoordinated ßHgS was likely present as nano-particles as suggested by transmission electron microscopy combined to X-ray energy dispersive spectroscopy (TEM-X-EDS) and nano-X ray fluorescence (nano-XRF). When exposed to MeHg, the production of IHg, on the contrary, increased with the increase of MeHg exposure until 50 µM for both BerOc1 and G200 strains, suggesting that demethylation did not require intact biological activity. The formed IHg species were identified as various tetracoordinated Hg-S forms. These results highlight the important role of thiol ligands and Hg coordination in Hg methylation and demethylation processes.

3.
Environ Sci Technol ; 52(17): 9758-9767, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30037219

RESUMO

The sources and factors controlling concentrations of monomethylmercury (MMHg) in aquatic ecosystems need to be better understood. Here, we investigated Hg transformations in sediments, periphyton associated with green algae's or aquatic plants, and benthic biofilms from the Lake Titicaca hydrosystem and compared them to the occurrence of active methylating microorganisms and extracellular Hg ligands. Intense Hg methylation was found in benthic biofilms and green algae's periphyton, while it remained low in sediments and aquatic plants' periphyton. Demethylation varied between compartments but remained overall in the same range. Hg methylation was mainly carried out by sulfate reducers, although methanogens also played a role. Its variability between compartments was first explained by the presence or absence of the hgcAB genes. Next, both benthic biofilm and green algae's periphyton exhibited a great diversity of extracellular low-molecular-weight (LMW) thiols (13 or 14 compounds) present at a range of a few nmol L-1 or µmol L-1 but clearly dominated by cysteine and 3-mercaptopropionic acid. Hg methylation was overall positively correlated to the total thiol concentrations, albeit to different extents according to the compartment and conditions. This work is the first examining the interplay between active methylating bacterial communities and extracellular ligands in heterotrophic biofilms and supports the involvement of LMW thiols in Hg methylation in real aquatic systems.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Perifíton , Poluentes Químicos da Água , Altitude , Biofilmes , Ecossistema , Lagos , Metilação , Compostos de Sulfidrila
4.
Bull Environ Contam Toxicol ; 96(5): 678-84, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27000380

RESUMO

A Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method has been adapted and validated for the simultaneous analysis of 16 PAHs, 12 PCBs and 9 OCPs in sediment. The sample preparation was adapted by modifying the nature of the extraction solvent, the extraction technique and the amount of sediment. The analytical performances were evaluated in terms of accuracy, linearity and quantification limits. The method was validated by the analysis of a reference marine sediment material (SRM 1941b). The obtained concentrations are in good agreement with the certified values with recoveries ranging 60 %-103 % for most of PAHs. Acceptable recoveries are obtained for PCBs, ranging 76 %-131 %, and for OCPs ranging 81 %-137 %. The method was applied to the analysis of sediments from the hydro-system Bizerte Lagoon/Ichkeul Lake (Tunisia). The Bizerte lagoon is mainly contaminated by PAHs whereas the Ichkeul lake is mainly by OCPs.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Sedimentos Geológicos/análise , Hidrocarbonetos Clorados/análise , Praguicidas/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Lagos , Tunísia
5.
Environ Sci Pollut Res Int ; 23(1): 36-48, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26165992

RESUMO

This study aimed to identify the most commonly used agricultural pesticides around Ichkeul Lake-Bizerta Lagoon watershed. First survey of pesticide use on agricultural watershed was performed with farmers, Regional Commissioner for Agricultural Development, and pesticide dealers. Then, sediment contamination by pesticides and response of benthic communities (bacteria and free-living marine nematode) were investigated. The analysis of 22 active organochlorine pesticides in sediments was performed according to quick, easy, cheap, effective, rugged, and safe (QuEChERS) method, biodiversity of indigenous bacterial community sediment was determined by terminal restriction fragment length polymorphism (T-RFLP), and free-living marine nematodes were counted. The results of the field survey showed that iodosulfuron, mesosulfuron, 2,4-dichlorophenoxyacetic acid (2,4 D), glyphosate, and fenoxaprops were the most used herbicides, tebuconazole and epoxiconazole the most used fungicides, and deltamethrin the most used insecticide. Sixteen organochlorine pesticide compounds among the 22 examined were detected in sediments up to 2 ppm in Ichkeul Lake, endrin, dieldrin, and hexachlorocyclohexane being the most detected molecules. The most pesticide-contaminated site in the lake presented the higher density of nematode, but when considering all sites, no clear correlation with organochlorine pesticide (OCP) content could be established. The bacterial community structure in the most contaminated site in the lake was characterized by the terminal restriction fragments (T-RFs) 97, 146, 258, 285, and 335 while the most contaminated site in the lagoon was characterized by the T-RFs 54, 263, 315, 403, and 428. Interestingly, T-RFs 38 and 143 were found in the most contaminated sites of both lake and lagoon ecosystems, indicating that they were resistant to OCPs and able to cope with environmental fluctuation of salinity. In contrast, the T-RFs 63, 100, 118, and 381 in the lake and the T-RFs 40, 60, 80, 158, 300, 321, and 357 in the lagoon were sensitive to OCPs. This study highlighted that the intensive use of pesticides in agriculture, through transfer to aquatic ecosystem, may disturb the benthic ecosystem functioning of the protected area. The free-living marine nematodes and bacterial communities represent useful proxy to follow the ecosystem health and its capacity of resilience.


Assuntos
Bactérias/efeitos dos fármacos , Lagos , Nematoides/efeitos dos fármacos , Praguicidas , Poluentes Químicos da Água , Ácido 2,4-Diclorofenoxiacético , Agricultura , Animais , Dieldrin , Ecossistema , Hidrocarbonetos Clorados/análise , Inseticidas/análise , Lagos/química , Praguicidas/análise , Tunísia , Poluentes Químicos da Água/análise
6.
Anal Bioanal Chem ; 406(4): 1121-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23942567

RESUMO

As methylmercury (MeHg) can be bioaccumulated and biomagnified in the trophic web, its toxicity for marine mammals is of major concern. Mercury speciation in marine biota has been widely studied, mainly focused on the discrimination and quantification of inorganic Hg and MeHg. Less attention has been paid to the interactions of Hg with biomolecules and the characterization of its specific binding, which play a key role in metabolic pathways controlling its uptake, transformation, and toxicity. In the studied white-sided dolphin (Lagenorhynchus acutus) liver homogenate (QC04LH4) sample, approximately 60% of the total MeHg was found in the water soluble fraction, specifically associated with high molecular weight biomolecules. The identity of the involved proteins was investigated (after tryptic digestion of the fraction) by µRPLC with parallel detection by ICP-MS and ESI-MS/MS. Molecular mass spectrometry experiments were carried out at high resolution (100000) to ensure accurate protein identification and determination of the MeHg binding sites. Cysteine residue on the dolphin hemoglobin ß chain was found to be the main MeHg binding site, suggesting that hemoglobin is a major MeHg binding protein in this marine mammal and could be a potential carrier of this MeHg from blood to liver prior to its degradation in this organ. In parallel, a significant proportion of selenium was found to be present as selenoneine and a potential role for this compound in Hg detoxification is discussed.


Assuntos
Golfinhos/metabolismo , Hemoglobinas/metabolismo , Fígado/metabolismo , Compostos de Metilmercúrio/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Fígado/química , Compostos de Metilmercúrio/análise , Ligação Proteica , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA