Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3602, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684700

RESUMO

Glioblastoma (GBM) is a highly lethal type of cancer. GBM recurrence following chemoradiation is typically attributed to the regrowth of invasive and resistant cells. Therefore, there is a pressing need to gain a deeper understanding of the mechanisms underlying GBM resistance to chemoradiation and its ability to infiltrate. Using a combination of transcriptomic, proteomic, and phosphoproteomic analyses, longitudinal imaging, organotypic cultures, functional assays, animal studies, and clinical data analyses, we demonstrate that chemoradiation and brain vasculature induce cell transition to a functional state named VC-Resist (vessel co-opting and resistant cell state). This cell state is midway along the transcriptomic axis between proneural and mesenchymal GBM cells and is closer to the AC/MES1-like state. VC-Resist GBM cells are highly vessel co-opting, allowing significant infiltration into the surrounding brain tissue and homing to the perivascular niche, which in turn induces even more VC-Resist transition. The molecular and functional characteristics of this FGFR1-YAP1-dependent GBM cell state, including resistance to DNA damage, enrichment in the G2M phase, and induction of senescence/stemness pathways, contribute to its enhanced resistance to chemoradiation. These findings demonstrate how vessel co-option, perivascular niche, and GBM cell plasticity jointly drive resistance to therapy during GBM recurrence.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Camundongos , Quimiorradioterapia/métodos , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Tolerância a Radiação , Proteínas de Sinalização YAP/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Proteômica
2.
Oncotarget ; 8(7): 11268-11283, 2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28061464

RESUMO

The receptor tyrosine kinase MET and its ligand, the hepatocyte growth factor, are essential to embryonic development, whereas deregulation of MET signaling is associated with tumorigenesis leading to various cancers, including lung carcinoma. Mutations in the MET kinase domain lead to constitutive kinase activity and are associated with tumorigenesis. In lung cancer, however, some mutations are found in the juxtamembrane domain, and their functional consequences are unknown. Because the juxtamembrane domain of MET is targeted by several proteolytic cleavages, involved in its degradation during cell death or under steady-state conditions, we evaluated the influence of these mutations on the MET proteolytic cleavages. In stably transfected epithelial cells expressing MET, the juxtamembrane mutations R970C, P991S, and T992I were found not to modify the known caspase or presenilin-dependent regulated intramembrane proteolysis. Yet when overexpressed, the R970C variant caused generation of an as yet undescribed 45-kDa fragment (p45 MET). This fragment was found in the confluent lung cancer cell line NCI-H1437 carrying the R970C mutation and at a lesser extent in cell lines expressing WT MET, suggesting that R970C mutation favors this cleavage. Generation of p45 MET required the activity of the calpain proteases, confirming the involvement of proteolysis. Ectopic expression of reconstituted p45 MET in epithelial cell lines favored cell scattering and invasion indicating active role of this fragment in HGF/SF induced responses. Hence, although the juxtamembrane mutations of MET do not affect its known proteolytic cleavages, the R970C MET variant favors calpain dependent proteolytic cleavage in lung cancer cells.


Assuntos
Calpaína/metabolismo , Células Epiteliais/metabolismo , Neoplasias Pulmonares/genética , Domínios Proteicos/genética , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Western Blotting , Linhagem Celular Tumoral , Imunofluorescência , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/patologia , Mutação , Transdução de Sinais/genética
3.
Cancer Res ; 74(23): 6737-44, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25411347

RESUMO

Met receptor tyrosine kinase was discovered in 1984 as an oncogene. Thirty years later, Met and its ligand hepatocyte growth factor/scatter factor are promising targets for the novel therapies developed to fight against cancers, with more than 240 clinical trials currently conducted. In this review, we offer to trace and highlight the most recent findings of the exemplary track record of research on Met receptor, which allowed moving this biomarker from bench to bedside. Indeed, three decades of basic research unravelled the structural basis of the ligand/receptor interaction and their complex downstream signaling network. During this period, animal models highlighted their crucial role in the development and homeostasis of epithelial organs. In parallel, involvement of Met in tumorigenesis was confirmed by the direct association of its deregulation to poor prognosis in numerous cancers. On the basis of these data, pharmaceutical companies developed many Met inhibitors, some of which are in phase III clinical trials. These impressive achievements should not detract from many questions that still remain, such as the precise Met signaling involvement in development or homeostasis of specific epithelial structures. In addition, the processes involving Met in resistance to current therapies or the appearance of resistances to Met-targeted therapies are far from being fully understood.


Assuntos
Biomarcadores/metabolismo , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ensaios Clínicos Fase III como Assunto , Humanos , Ligantes , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
4.
Med Sci (Paris) ; 30(10): 864-73, 2014 Oct.
Artigo em Francês | MEDLINE | ID: mdl-25311021

RESUMO

In 1984, the Met receptor and its ligand, the HGF/SF, were discovered thanks to their ability to induce cell transformation and proliferation. Thirty years of research highlighted their crucial role in the development and homeostasis of various structures, including many epithelial organs. This period also allowed unraveling the structural basis of their interaction and their complex signaling network. In parallel, Met was shown to be deregulated and associated with a poor prognosis in many cancers. Met involvement in resistance to current therapies is also being deciphered. Based on these data, pharmaceutical companies developed a variety of Met inhibitors, some of which are evaluated in phase III clinical trials. In this review, we trace the exemplary track record of research on Met receptor, which allowed moving from bench to bedside through the development of therapies targeting its activity. Many questions still remain unanswered such as the involvement of Met in several processes of development, the mechanisms involving Met in resistance to current therapies or the likely emergence of resistances to Met-targeted therapies.


Assuntos
Pesquisa Biomédica/tendências , Estudos de Associação Genética , Terapia de Alvo Molecular , Proteínas Proto-Oncogênicas c-met/fisiologia , Animais , Pesquisa Biomédica/história , História do Século XX , História do Século XXI , Humanos , Oncogenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA