Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 350: 124009, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38670423

RESUMO

Water reuse for potable purposes can represent a realistic source supply of drinking water in areas with water scarcity. Therefore, combining conventional wastewater treatment technologies with advanced technologies is necessary to remove contaminants and obtain high-quality and safe water. In this study, the pesticides and degradation products, atrazine (ATZ), hydroxyatrazine (ATZOH), deethylatrazine (DEA), deisopropylatrazine (DIA), simazine (SMZ), ametryn (AMT), diuron (DIU), 2,4-D, fipronil (FIP), fipronil sulfide (FIP-SF) and fipronil sulfone (FIP-SN) were evaluated in effluent after membrane bioreactor (MBR), effluent after advanced treatment by multiple barriers (MBR, reverse osmosis, UV/H2O2 and activated carbon), in tap water collected in the urban region of Campinas and in the Atibaia River (water supply source from city of Campinas). The pesticide concentrations in the Atibaia River and the post-MBR effluent ranged between 1 and 434 ng L-1 and 1 and 470 ng L-1, respectively. Therefore, the Atibaia River and the post-MBR effluent had the same magnitude pesticide concentrations. In the production of potable water reuse, after the multiple barriers processes, only fipronil (1 ng L-1) and atrazine (3 ng L-1) were quantified in some of the samples. In tap water from Campinas, atrazine, ATZOH, DEA, diuron, and 2,4-D were quantified in concentrations ranging between 3 and 425 ng L-1. Therefore, when comparing drinking water obtained from conventional treatment with potable water reuse, according to the pesticides studied, it is possible to conclude that the advanced treatment used on a pilot scale is promising for use in a potable water reuse plant. However, studies involving more microbiological and chemical parameters should be conducted to classify potable water reuse as drinking water.


Assuntos
Praguicidas , Poluentes Químicos da Água , Purificação da Água , Poluentes Químicos da Água/análise , Praguicidas/análise , Purificação da Água/métodos , Projetos Piloto , Água Potável/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Atrazina/análise , Reatores Biológicos
2.
Arch Environ Contam Toxicol ; 86(2): 112-124, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38265449

RESUMO

Predation presents specific behavioral characteristics for each species, and the interaction between prey and predator influences the structuring of the food web. Concerning insects, predation can be affected in different ways, such as exposure to chemical stressors, e.g., pesticides. Therefore, analyses were carried out of the effects of exposure to insecticide fipronil and the herbicide 2,4-D on predation, parameters of food selectivity, and the swimming behavior of two neotropical predatory aquatic insects of the families Belostomatidae (giant water bugs) and larvae of Libellulidae (dragonfly). These predatory insects were exposed for 24 h to a commercial formulation of the chlorophenoxy herbicide, 2,4-D at nominal concentrations of 200, 300, 700, and 1400 µg L-1, and to a commercial formulation of the phenylpyrazole insecticide, fipronil at nominal concentrations of 10, 70, 140, and 250 µg L-1. In a control treatment, the insects were placed in clean, unspiked water. At the end of the exposure, the maximum swimming speed of the predators was evaluated. Afterward, the predators were placed in clean water in a shared environment for 24 h with several prey species, including the cladoceran Ceriodaphnia silvestrii, larvae of the insect Chironomus sancticaroli, the amphipod Hyalella meinerti, the ostracod Strandesia trispinosa, and the oligochaete Allonais inaequalis for 24 h. After this period, the consumed prey was counted. The results reveal that predators from both families changed prey consumption compared with organisms from the control treatment, marked by a decrease after exposure to fipronil and an increase in consumption caused by 2,4-D. In addition, there were changes in the food preferences of both predators, especially when exposed to the insecticide. Exposure to fipronil decreased the swimming speed of Belostomatidae individuals, possibly due to its neurotoxic effect. Exposure to the insecticide and the herbicide altered prey intake by predators, which could negatively influence the complex prey-predator relationship and the functioning of aquatic ecosystems in contaminated areas.


Assuntos
Herbicidas , Inseticidas , Odonatos , Praguicidas , Humanos , Animais , Inseticidas/toxicidade , Cadeia Alimentar , Ecossistema , Invertebrados , Insetos , Larva , Herbicidas/toxicidade , Ácido 2,4-Diclorofenoxiacético/toxicidade , Comportamento Predatório
3.
Chemosphere ; 341: 139954, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37660794

RESUMO

Rivers in Southeast Brazil are essential as sources of drinking water, energy production, irrigation, and industrial processes. The Piracicaba, Capivari, and Jundiaí rivers basin, known as the PCJ basin, comprises major cities, industrial hubs, and large agricultural areas, which have impacted the water quality in the region. Emerging contaminants such as pesticides, hormones, pharmaceuticals, industrial chemicals, and per- and polyfluoroalkyl substances (PFAS) are likely to be released into the rivers in the PCJ basin; however, the current Brazilian legislation does not require monitoring of most of these chemicals. Thus, the extent of emerging contaminants pollution and their risks to aquatic and human life in the basin are largely unknown. In this study, we investigated the occurrence of several pesticides, hormones, pharmaceuticals, and personal care products in 15 sampling points across the PCJ basin, while industrial chemicals and PFAS were assessed in 11 sampling points. The results show that agriculture and industrial activities are indeed causing the pollution of most rivers. Multivariate analysis indicates that some sampling points, such as Jundiaí, Capivari, and Piracicaba rivers, are largely impacted by pesticides used in agriculture. In addition, to the best of our knowledge, this is the first study reporting the presence of PFAS in rivers in São Paulo, the most populous state in Brazil. Four out of eight species of PFAS assessed in our study were detected in at least 5 sampling points at concentrations ranging from 2.0 to 50.0 ng L-1. The preliminary risk assessment indicates that various pesticides, caffeine, industrial chemicals, and PFAS were present at concentrations that could threaten aquatic life. Notably, risk quotients of 414, 340, and 178 were obtained for diuron, atrazine, and imidacloprid, respectively, in the Jundiaí River. Our study suggests that establishing a comprehensive monitoring program is needed to ensure the protection of aquatic life and human health.


Assuntos
Fluorocarbonos , Praguicidas , Humanos , Brasil , Urbanização , Rios , Agricultura , Hormônios , Preparações Farmacêuticas
4.
Chemosphere ; 299: 134395, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35339518

RESUMO

In recent decades, changes in human behavior and new technologies have introduced thousands of new compounds into the environment called "contaminants of emerging concern" (CEC). These compounds have been detected in different environmental compartments such as soil, surface water, air, and groundwater. The presence of these contaminants in groundwater may pose risks to human health when used as potable water. In some urban areas in Brazil, groundwater is normally consumed without previous treatment. This study aimed to use statistical analysis by self-organizing maps (SOM) to evaluate the trends of CEC in urban groundwater systems. A total of 23 CEC compounds including pesticides, pharmaceuticals, and hormones were determined in groundwater samples using solid phase extraction and liquid chromatography-mass spectrometry. The CEC most frequently detected were atrazine and degradation products, fipronil, simazine, tebuconazole, hexazinone, and caffeine in concentrations up to 300 ng L-1. All studied compounds were detected in groundwater at least in one sample. Patterns in the data through SOM have shown a strong positive correlation between atrazine, hexazinone, simazine, tebuthiuron, 2-hydroxyatrazine, and 17ß-estradiol. The hormones estrone and testosterone also show a positive correlation due to their similar chemical properties. On the other hand, caffeine was detected in 90% of the samples, likely due to a population habit of taking daily a hot drink made of yerba mate associated with low rates of treated domestic sewage in the study area.


Assuntos
Atrazina , Água Subterrânea , Poluentes Químicos da Água , Atrazina/análise , Cafeína/análise , Monitoramento Ambiental , Água Subterrânea/análise , Hormônios/análise , Humanos , Simazina/análise , Poluentes Químicos da Água/análise
5.
Aquat Toxicol ; 245: 106117, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35176695

RESUMO

When pesticides reach the aquatic environment, they can distribute in water and sediment, increasing the risks to benthic organisms, such as amphipods that play a key role in the aquatic food webs. Thus, the present study assessed the consequences of exposure to the insecticide fipronil and herbicide 2,4-D (alone and in mixture) on biochemical markers, feeding rates and the partial life-cycle of Hyalella meinerti. Three concentrations of fipronil (0.1, 0.3, and 0.7 µg L-1) and 2,4-D (19, 124, and 654 µg L-1), and six mixture combinations were assessed. The first experiment was carried out with males and females separately assessing the feeding rates, total carbohydrate content, and lipid profile. The second (partial life-cycle) lasted 49 days, and the survival, growth, and reproductive endpoints were assessed. Both pesticides and their mixture caused decreases in feeding rates, mainly in females. Females also suffered a change in the total carbohydrate content. In addition, there were changes in the percentage of triacylglycerol and phospholipids in males and females. Furthermore, alterations occurred in the percentual of triacylglycerol and phospholipids to both sexes. In the second experiment, fipronil and the mixtures caused decreases in the survival of H. meinerti over time. Exposure to 2,4-D, fipronil, and their mixture impaired the 28-day growth leading to biomass loss ranging from 17-23%, 54-60%, and 22-49%, respectively. The insecticide and mixture caused increases in time to sexual maturation of up to 10 and 6 days, respectively, and reduced the number of formed couples. Furthermore, fipronil decreased reproduction up to 36 times and no juveniles were produced in some mixture combinations. In addition, the pesticides on isolation decreased the juvenile size. Finally, exposure to both pesticides, alone or in a mixture, decreased the intrinsic rate of population growth. The results were observed in concentrations already quantified in water bodies, with risks for ecosystems functioning due to the importance of amphipods in aquatic ecosystems.


Assuntos
Anfípodes , Praguicidas , Poluentes Químicos da Água , Ácido 2,4-Diclorofenoxiacético , Animais , Ecossistema , Feminino , Masculino , Praguicidas/toxicidade , Poluentes Químicos da Água/toxicidade
6.
Arch Environ Contam Toxicol ; 82(3): 330-340, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35138446

RESUMO

Sugarcane crops are dependent on chemicals for maintaining plantations. Therefore, environmental consequences concern adjacent areas that can be affected by contaminants in common use, including pesticides and vinasse (i.e., a by-product from the ethanol industry). This study aimed to evaluate phytotoxicity through two plant bioassays with water from mesocosms contaminated with the herbicide 2,4-D (447.0 µg L-1), the insecticide fipronil (63.5 µg L-1), and sugarcane vinasse (1.3%). First, the germination test (4 d) with Eruca sativa L. assessed water samples collected three times after the contamination (2 h, 14 d, and 30 d), considering germination, shoot, and root growth. The results from this bioassay indicated higher phytotoxicity for 2,4-D as it fully inhibited the shoot and root growth even in low concentrations (0.2 µg L-1). However, no significant effect was reported for fipronil and vinasse. Also, the 2,4-D effects drastically decreased due to an expressive concentration reduction (99.4% after 30 d in mixture with vinasse). Second, the irrigation test with Phaseolus vulgaris L. and Zea mays L. considered shoot and root growth and biomass under 21 days after plants emergence. The herbicide 2,4-D inhibited the initial growth of tested species, especially the roots (up to 45% inhibition). Furthermore, sugarcane vinasse caused harmful effects on plant growth (up to 31% inhibition). Therefore, our data showed that these contaminants could inhibit plant germination and initial growth under our tested conditions. These evaluations can endorse risk assessments and water management in sugarcane crops surrounding areas.


Assuntos
Praguicidas , Saccharum , Destilação , Etanol , Germinação/efeitos dos fármacos , Praguicidas/toxicidade , Sementes , Água , Poluentes Químicos da Água/efeitos adversos , Poluição Química da Água/efeitos adversos
7.
Environ Toxicol Pharmacol ; 85: 103634, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33741518

RESUMO

Female juveniles of the Neotropical fish Astyanax altiparanae were exposed for 96 h to four treatments containing the active ingredient from Imidacloprid® commercial formulation (IMI 1, IMI 2, IMI 3, and IMI 4) and to a control treatment (only dechlorinated tap water). Glutathione content, glutathione S-transferase activity, lipid peroxidation (LPO) and protein carbonylation levels, acetylcholinesterase (AChE) activity, and frequency of micronuclei and erythrocyte nuclear abnormalities (ENA) were measured in the fish. The muscle and gills were the most affected organs; their antioxidant defense was not enough to prevent oxidative damage (LPO) in the IMI 2 and IMI 4 treatment fish. IMI also inhibited AChE activity in the muscle (IMI 3 and IMI 4) and increased ENA frequency (IMI 4). IMI can affect the health of A. altiparanae in environmentally relevant concentrations, causing oxidative damage in different organs, neurotoxic effects in the muscle, and genotoxicity.


Assuntos
Characidae , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Poluentes Químicos da Água/toxicidade , Acetilcolinesterase/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Feminino , Proteínas de Peixes/metabolismo , Água Doce , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Glutationa/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Testes para Micronúcleos , Músculos/efeitos dos fármacos , Músculos/metabolismo , Síndromes Neurotóxicas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos
8.
Artigo em Inglês | MEDLINE | ID: mdl-33630257

RESUMO

Nitrosamines are a concerning group of carcinogens, which have gained increasing attention over the last years, frequently found in drinking and recycled water systems. In this work, an analytical method was developed for the detection and quantification of seven nitrosamines (NDMA, NMEA, NPYR, NDEA, NPIP, NDPA, and NDBA) in drinking water. The method is based on gas chromatography coupled with a single quadrupole mass spectrometer (GC-MS) with electron ionization (EI) mode. Sample enrichment and matrix cleanup by solid-phase extraction (SPE) were performed using the US EPA Method 521 cartridge packed with coconut-based charcoal. The simple method allowed reliable identification and quantification of nitrosamines in the water at nanogram per liter levels. The optimized method was validated at three concentration levels (20, 100, and 200 ng L-1) in ultrapure and drinking water samples. Average recoveries were 63-87% for ultrapure water and 38-79% for drinking water with relative standard deviations (RSD) below 10% for both matrices. Method detection limits were 1.23-3.14 ng L-1. The described method was applied to eighteen drinking water samples collected from 13 cities of the Metropolitan Region of Campinas (São Paulo, Brazil). NDMA was the most frequent nitrosamine detected (89% of samples) and had the highest concentration level found (67 ng L-1). The levels of nitrosamines found in drinking water samples are of considerable relevance since the selected area is a major urban center that has amply expanded industrial and agricultural activities over the last few decades. To the best of our knowledge, this is the first evaluation of nitrosamines in drinking water conducted in Brazil to date.

9.
Ecotoxicol Environ Saf ; 208: 111622, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396142

RESUMO

The continuous growth in global population since the beginning of the 20th century result in the necessity of food and energy provision favoring the intensive use of agricultural products such as pesticides. Although pesticides are important to prevent losses in the conventional chemically based agriculture, they frequently present side effects, which goes against agricultural production. The use of pesticides cause direct and indirect effects to soil organisms unbalancing essential soil processes (e.g. primary production, organic matter decomposition, nutrient cycling). Under tropical conditions, very little is known regarding the effects of pesticides to terrestrial organisms. Hence, the aim of the present study was to assess the ecotoxicological effects of the herbicide DMA® 806 BR (active ingredient: 2,4-D) and the insecticide Regent® 800 WG (active ingredient: fipronil), on terrestrial plant species (the dicot Raphanus sativus var. acanthioformis and the monocot Allium cepa), and soil invertebrates (the collembolan Folsomia candida and the enchytraeid Enchytraeus crypticus), using natural (NS) and artificial soils (TAS). For both pesticides, negative effects on non-target species were observed at concentrations lower than the doses recommended to prevent pests in sugarcane fields. For both soils, the dicot species was the most affected by the herbicide (R. sativus > A. cepa > F. candida > E. crypticus) and the collembolan species was the most affected by the insecticide (F. candida > E. crypticus = R. sativus = A. cepa). Although the order of the organisms' sensitivity for both pesticides was the same in both soils, results showed that the extent of the effects was soil dependent. Considering the ecologically relevant concentrations tested, and their severe effects to non-target organisms, it may be concluded that the use of fipronil and 2,4-D under recommended conditions may pose a risk to the terrestrial environment.


Assuntos
Ácido 2,4-Diclorofenoxiacético/toxicidade , Praguicidas/toxicidade , Pirazóis/toxicidade , Saccharum/fisiologia , Poluentes do Solo/análise , Agricultura , Animais , Artrópodes/efeitos dos fármacos , Artrópodes/fisiologia , Ecotoxicologia , Inseticidas/toxicidade , Oligoquetos/efeitos dos fármacos , Oligoquetos/fisiologia , Solo/química
10.
Environ Sci Pollut Res Int ; 28(8): 9824-9835, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33156498

RESUMO

In this study, a multi-residue method was used to analyze 13 pesticides and 1 degradation product in surface and groundwater in the region with the largest sugar cane production in the world. The potential effects of individual pesticides and their mixtures, for aquatic life and human consumption, were evaluated. For the surface water, 2-hydroxy atrazine, diuron, carbendazim, tebuthiuron, and hexazinone were the most frequently detected (100, 94, 93, 92, and 91%, respectively). Imidacloprid (2579 ng L-1), carbendazim (1114 ng L-1), ametryn (1101 ng L-1), and tebuthiuron (1080 ng L-1) were found at the highest concentrations. For groundwater, tebuthiuron was the only quantified pesticide (107 ng L-1). Ametryn, atrazine, diuron, hexazinone, carbofuran, imidacloprid, malathion, carbendazim, and their mixtures presented risk for the aquatic life. No risk was observed for the pesticides analyzed in this work, alone or in their mixtures for human consumption.


Assuntos
Atrazina , Praguicidas , Saccharum , Poluentes Químicos da Água , Diurona , Monitoramento Ambiental , Humanos , Praguicidas/análise , Poluentes Químicos da Água/análise
11.
J Environ Monit ; 13(11): 3288-93, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22041933

RESUMO

Estrogenic Endocrine Disrupting Chemicals (EDCs) are a concern due to their ubiquity and recognized adverse effects to humans and wildlife. Methods to assess exposure to and associated risks of their presence in aquatic environment are still under development. The aim of this work is to assess estrogenicity of raw and treated waters with different degrees of pollution. Chemical analyses of selected EDCs were performed by liquid chromatography-tandem mass spectrometry, and estrogenic activity was evaluated using in vitro bioluminescent yeast estrogen assay (BLYES). Most raw water samples (18/20) presented at least one EDC and 16 rendered positive in BLYES. When EDCs were detected, the bioassay usually provided a positive response, except when only bisphenol A was detected at low concentrations. The highest values of estrogenic activity were detected in the most polluted sites. The maximum estrogenic activity observed was 8.7 ng equiv. of E2 L(-1). We compared potencies observed in the bioassay to the relative potency of target compounds and their concentrations failed to fully explain the biological response. This indicates that bioassay is more sensitive than the chemical approach either detecting estrogenic target compounds at lower concentrations, other non-target compounds or even synergistic effects, which should be considered on further investigations. We have not detected either estrogenic activity or estrogenic compounds in drinking water. BLYES showed good sensitivity with a detection limit of 0.1 ng equiv. E2 L(-1) and it seems to be a suitable tool for water monitoring.


Assuntos
Bioensaio/métodos , Disruptores Endócrinos/análise , Monitoramento Ambiental/métodos , Estrogênios/análise , Medições Luminescentes/métodos , Poluentes Químicos da Água/análise , Poluição Química da Água/análise , Brasil , Cromatografia Líquida , Água Potável/química , Limite de Detecção , Saccharomyces cerevisiae/metabolismo , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA