Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Diabetes ; 73(7): 1167-1177, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38656940

RESUMO

Reduced kidney AMPK activity is associated with nutrient stress-induced chronic kidney disease (CKD) in male mice. In contrast, female mice resist nutrient stress-induced CKD. The role of kidney AMPK in sex-related organ protection against nutrient stress and metabolite changes was evaluated in diabetic kidney tubule-specific AMPKγ2KO (KTAMPKγ2ΚΟ) male and female mice. In wild-type (WT) males, diabetes increased albuminuria, urinary kidney injury molecule-1, hypertension, kidney p70S6K phosphorylation, and kidney matrix accumulation; these features were not exacerbated with KTAMPKγ2ΚΟ. Whereas WT females had protection against diabetes-induced kidney injury, KTAMPKγ2ΚΟ led to loss of female protection against kidney disease. The hormone 17ß-estradiol ameliorated high glucose-induced AMPK inactivation, p70S6K phosphorylation, and matrix protein accumulation in kidney tubule cells. The mechanism for female protection against diabetes-induced kidney injury is likely via an estrogen-AMPK pathway, as inhibition of AMPK led to loss of estrogen protection to glucose-induced mTORC1 activation and matrix production. RNA sequencing and metabolomic analysis identified a decrease in the degradation pathway of phenylalanine and tyrosine resulting in increased urinary phenylalanine and tyrosine levels in females. The metabolite levels correlated with loss of female protection. The findings provide new insights to explain evolutionary advantages to females during states of nutrient challenges.


Assuntos
Proteínas Quinases Ativadas por AMP , Nefropatias Diabéticas , Rim , Animais , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/prevenção & controle , Feminino , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Rim/metabolismo , Camundongos Knockout , Fosforilação , Estradiol/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Diabetes Mellitus Experimental/metabolismo
2.
Cancer Res ; 65(7): 2730-7, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15805272

RESUMO

Cancer cells require mechanisms to maintain telomeres. Most use telomerase, but 5% to 20% of tumors use alternative lengthening of telomeres (ALT), a telomerase-independent mechanism that seems to depend on recombination. ALT is characterized by amplification of telomere TTAGGG repeats to lengths beyond 50 kb, by elevated rates of telomere recombination, and by nuclear structures called ALT-associated promyelocytic leukemia bodies. In Saccharomyces cerevisiae, survivors of telomerase inactivation also use recombination to maintain telomeres. There are two types of survivors, which differ in telomere structure. The first possesses telomere repeats and the Y' subtelomeric element amplified together as a tandem array at chromosome termini (type I), and the other possesses amplification of telomeric repeats alone (type II), similar to previously described human ALT cells. Here, we describe the first human ALT cell line having "tandem array" telomeres with a structure similar to that of type I yeast survivors. The chromosome termini consist of a repeat unit containing approximately 2.5 kb of SV40 DNA and a variable amount of TTAGGG sequence repeated in tandem an average of 10 to 20 times. Similar to previously described ALT cells, they show evidence of telomere recombination, but unlike standard ALT cells, they lack ALT-associated promyelocytic leukemia bodies and their telomeres are transcribed. These findings have implications for the pathogenesis and diagnosis of cancer.


Assuntos
Vírus 40 dos Símios/genética , Telômero/genética , Sequência de Bases , Linhagem Celular , DNA/genética , DNA/metabolismo , Fibroblastos/citologia , Células HeLa , Humanos , Leucemia Promielocítica Aguda/genética , Dados de Sequência Molecular , Sequências Repetitivas de Ácido Nucleico , Telômero/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA