Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Lancet Diabetes Endocrinol ; 11(8): 545-554, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37385287

RESUMO

BACKGROUND: Identification of genetic causes of central precocious puberty have revealed epigenetic mechanisms as regulators of human pubertal timing. MECP2, an X-linked gene, encodes a chromatin-associated protein with a role in gene transcription. MECP2 loss-of-function mutations usually cause Rett syndrome, a severe neurodevelopmental disorder. Early pubertal development has been shown in several patients with Rett syndrome. The aim of this study was to explore whether MECP2 variants are associated with an idiopathic central precocious puberty phenotype. METHODS: In this translational cohort study, participants were recruited from seven tertiary centres from five countries (Brazil, Spain, France, the USA, and the UK). Patients with idiopathic central precocious puberty were investigated for rare potentially damaging variants in the MECP2 gene, to assess whether MECP2 might contribute to the cause of central precocious puberty. Inclusion criteria were the development of progressive pubertal signs (Tanner stage 2) before the age of 8 years in girls and 9 years in boys and basal or GnRH-stimulated LH pubertal concentrations. Exclusion criteria were the diagnosis of peripheral precocious puberty and the presence of any recognised cause of central precocious puberty (CNS lesions, known monogenic causes, genetic syndromes, or early exposure to sex steroids). All patients included were followed up at the outpatient clinics of participating academic centres. We used high-throughput sequencing in 133 patients and Sanger sequencing of MECP2 in an additional 271 patients. Hypothalamic expression of Mecp2 and colocalisation with GnRH neurons were determined in mice to show expression of Mecp2 in key nuclei related to pubertal timing regulation. FINDINGS: Between Jun 15, 2020, and Jun 15, 2022, 404 patients with idiopathic central precocious puberty (383 [95%] girls and 21 [5%] boys; 261 [65%] sporadic cases and 143 [35%] familial cases from 134 unrelated families) were enrolled and assessed. We identified three rare heterozygous likely damaging coding variants in MECP2 in five girls: a de novo missense variant (Arg97Cys) in two monozygotic twin sisters with central precocious puberty and microcephaly; a de novo missense variant (Ser176Arg) in one girl with sporadic central precocious puberty, obesity, and autism; and an insertion (Ala6_Ala8dup) in two unrelated girls with sporadic central precocious puberty. Additionally, we identified one rare heterozygous 3'UTR MECP2 insertion (36_37insT) in two unrelated girls with sporadic central precocious puberty. None of them manifested Rett syndrome. Mecp2 protein colocalised with GnRH expression in hypothalamic nuclei responsible for GnRH regulation in mice. INTERPRETATION: We identified rare MECP2 variants in girls with central precocious puberty, with or without mild neurodevelopmental abnormalities. MECP2 might have a role in the hypothalamic control of human pubertal timing, adding to the evidence of involvement of epigenetic and genetic mechanisms in this crucial biological process. FUNDING: Fundação de Amparo à Pesquisa do Estado de São Paulo, Conselho Nacional de Desenvolvimento Científico e Tecnológico, and the Wellcome Trust.


Assuntos
Puberdade Precoce , Síndrome de Rett , Animais , Criança , Feminino , Humanos , Masculino , Camundongos , Brasil , Estudos de Coortes , Hormônio Foliculoestimulante , Hormônio Liberador de Gonadotropina , Hormônio Luteinizante/metabolismo , Puberdade Precoce/genética , Puberdade Precoce/diagnóstico , Síndrome de Rett/genética , Síndrome de Rett/complicações
2.
Clinics ; 77: 100132, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1421235

RESUMO

Abstract Objectives To analyze the efficiency of a multigenic targeted massively parallel sequencing panel related to endocrine disorders for molecular diagnosis of patients assisted in a tertiary hospital involved in the training of medical faculty. Material and methods Retrospective analysis of the clinical diagnosis and genotype obtained from 272 patients in the Endocrine unit of a tertiary hospital was performed using a custom panel designed with 653 genes, most of them already associated with the phenotype (OMIM) and some candidate genes that englobes developmental, metabolic and adrenal diseases. The enriched DNA libraries were sequenced in NextSeq 500. Variants found were then classified according to ACMG/AMP criteria, with Varsome and InterVar. Results Three runs were performed; the mean coverage depth of the targeted regions in panel sequencing data was 249×, with at least 96.3% of the sequenced bases being covered more than 20-fold. The authors identified 66 LP/P variants (24%) and 27 VUS (10%). Considering the solved cases, 49 have developmental diseases, 12 have metabolic and 5 have adrenal diseases. Conclusion The application of a multigenic panel aids the training of medical faculty in an academic hospital by showing the picture of the molecular pathways behind each disorder. This may be particularly helpful in developmental disease cases. A precise genetic etiology provides an improvement in understanding the disease, guides decisions about prevention or treatment, and allows genetic counseling.

3.
Clinics (Sao Paulo) ; 76: e2052, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33503178

RESUMO

OBJECTIVES: Single nucleotide variants (SNVs) are the most common type of genetic variation among humans. High-throughput sequencing methods have recently characterized millions of SNVs in several thousand individuals from various populations, most of which are benign polymorphisms. Identifying rare disease-causing SNVs remains challenging, and often requires functional in vitro studies. Prioritizing the most likely pathogenic SNVs is of utmost importance, and several computational methods have been developed for this purpose. However, these methods are based on different assumptions, and often produce discordant results. The aim of the present study was to evaluate the performance of 11 widely used pathogenicity prediction tools, which are freely available for identifying known pathogenic SNVs: Fathmn, Mutation Assessor, Protein Analysis Through Evolutionary Relationships (Phanter), Sorting Intolerant From Tolerant (SIFT), Mutation Taster, Polymorphism Phenotyping v2 (Polyphen-2), Align Grantham Variation Grantham Deviation (Align-GVGD), CAAD, Provean, SNPs&GO, and MutPred. METHODS: We analyzed 40 functionally proven pathogenic SNVs in four different genes associated with differences in sex development (DSD): 17ß-hydroxysteroid dehydrogenase 3 (HSD17B3), steroidogenic factor 1 (NR5A1), androgen receptor (AR), and luteinizing hormone/chorionic gonadotropin receptor (LHCGR). To evaluate the false discovery rate of each tool, we analyzed 36 frequent (MAF>0.01) benign SNVs found in the same four DSD genes. The quality of the predictions was analyzed using six parameters: accuracy, precision, negative predictive value (NPV), sensitivity, specificity, and Matthews correlation coefficient (MCC). Overall performance was assessed using a receiver operating characteristic (ROC) curve. RESULTS: Our study found that none of the tools were 100% precise in identifying pathogenic SNVs. The highest specificity, precision, and accuracy were observed for Mutation Assessor, MutPred, SNP, and GO. They also presented the best statistical results based on the ROC curve statistical analysis. Of the 11 tools evaluated, 6 (Mutation Assessor, Phanter, SIFT, Mutation Taster, Polyphen-2, and CAAD) exhibited sensitivity >0.90, but they exhibited lower specificity (0.42-0.67). Performance, based on MCC, ranged from poor (Fathmn=0.04) to reasonably good (MutPred=0.66). CONCLUSION: Computational algorithms are important tools for SNV analysis, but their correlation with functional studies not consistent. In the present analysis, the best performing tools (based on accuracy, precision, and specificity) were Mutation Assessor, MutPred, and SNPs&GO, which presented the best concordance with functional studies.


Assuntos
Biologia Computacional , Mutação de Sentido Incorreto , Humanos , Mutação , Mutação de Sentido Incorreto/genética , Polimorfismo de Nucleotídeo Único , Desenvolvimento Sexual , Virulência
4.
Clinics ; 76: e2052, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1153974

RESUMO

OBJECTIVES: Single nucleotide variants (SNVs) are the most common type of genetic variation among humans. High-throughput sequencing methods have recently characterized millions of SNVs in several thousand individuals from various populations, most of which are benign polymorphisms. Identifying rare disease-causing SNVs remains challenging, and often requires functional in vitro studies. Prioritizing the most likely pathogenic SNVs is of utmost importance, and several computational methods have been developed for this purpose. However, these methods are based on different assumptions, and often produce discordant results. The aim of the present study was to evaluate the performance of 11 widely used pathogenicity prediction tools, which are freely available for identifying known pathogenic SNVs: Fathmn, Mutation Assessor, Protein Analysis Through Evolutionary Relationships (Phanter), Sorting Intolerant From Tolerant (SIFT), Mutation Taster, Polymorphism Phenotyping v2 (Polyphen-2), Align Grantham Variation Grantham Deviation (Align-GVGD), CAAD, Provean, SNPs&GO, and MutPred. METHODS: We analyzed 40 functionally proven pathogenic SNVs in four different genes associated with differences in sex development (DSD): 17β-hydroxysteroid dehydrogenase 3 (HSD17B3), steroidogenic factor 1 (NR5A1), androgen receptor (AR), and luteinizing hormone/chorionic gonadotropin receptor (LHCGR). To evaluate the false discovery rate of each tool, we analyzed 36 frequent (MAF>0.01) benign SNVs found in the same four DSD genes. The quality of the predictions was analyzed using six parameters: accuracy, precision, negative predictive value (NPV), sensitivity, specificity, and Matthews correlation coefficient (MCC). Overall performance was assessed using a receiver operating characteristic (ROC) curve. RESULTS: Our study found that none of the tools were 100% precise in identifying pathogenic SNVs. The highest specificity, precision, and accuracy were observed for Mutation Assessor, MutPred, SNP, and GO. They also presented the best statistical results based on the ROC curve statistical analysis. Of the 11 tools evaluated, 6 (Mutation Assessor, Phanter, SIFT, Mutation Taster, Polyphen-2, and CAAD) exhibited sensitivity >0.90, but they exhibited lower specificity (0.42-0.67). Performance, based on MCC, ranged from poor (Fathmn=0.04) to reasonably good (MutPred=0.66). CONCLUSION: Computational algorithms are important tools for SNV analysis, but their correlation with functional studies not consistent. In the present analysis, the best performing tools (based on accuracy, precision, and specificity) were Mutation Assessor, MutPred, and SNPs&GO, which presented the best concordance with functional studies.


Assuntos
Humanos , Biologia Computacional , Mutação de Sentido Incorreto/genética , Virulência , Polimorfismo de Nucleotídeo Único , Desenvolvimento Sexual , Mutação
5.
J Clin Endocrinol Metab ; 104(6): 2112-2120, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30462238

RESUMO

BACKGROUND: Delta-like homolog 1 (DLK1), also called preadipocyte factor 1, prevents adipocyte differentiation and has been considered a molecular gatekeeper of adipogenesis. A DLK1 complex genomic defect was identified in five women from a single family with central precocious puberty (CPP) and increased body fat percentage. METHODS: We studied 60 female patients with a diagnosis of CPP or history of precocious menarche. Thirty-one of them reported a family history of precocious puberty. DLK1 DNA sequencing was performed in all patients. Serum DLK1 concentrations were measured using an ELISA assay in selected cases. Metabolic and reproductive profiles of adult women with CPP caused by DLK1 defects were compared with those of 20 women with idiopathic CPP. RESULTS: We identified three frameshift mutations of DLK1 (p.Gly199Alafs*11, p.Val271Cysfs*14, and p.Pro160Leufs*50) in five women from three families with CPP. Segregation analysis was consistent with the maternal imprinting of DLK1. Serum DLK1 concentrations were undetectable in three affected women. Metabolic abnormalities, such as overweight/obesity, early-onset glucose intolerance/type 2 diabetes mellitus, and hyperlipidemia, were more prevalent in women with the DLK1 mutation than in the idiopathic CPP group. Notably, the human metabolic alterations were similar to the previously described dlk1-null mice phenotype. Two sisters who carried the p.Gly199Alafs*11 mutation also exhibited polycystic ovary syndrome and infertility. CONCLUSIONS: Loss-of-function mutations of DLK1 are a definitive cause of familial CPP. The high prevalence of metabolic alterations in adult women who experienced CPP due to DLK1 defects suggests that this antiadipogenic factor represents a link between reproduction and metabolism.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Proteínas de Membrana/fisiologia , Doenças Metabólicas/genética , Puberdade Precoce/genética , Adolescente , Adulto , Proteínas de Ligação ao Cálcio/sangue , Proteínas de Ligação ao Cálcio/genética , Feminino , Humanos , Infertilidade Feminina/genética , Proteínas de Membrana/sangue , Proteínas de Membrana/genética , Doenças Metabólicas/etiologia , Pessoa de Meia-Idade , Mutação , Síndrome do Ovário Policístico/genética , Puberdade Precoce/etiologia
6.
J Clin Endocrinol Metab ; 102(5): 1557-1567, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28324015

RESUMO

Context: Central precocious puberty (CPP) results from premature activation of the hypothalamic-pituitary-gonadal axis. Few genetic causes of CPP have been identified, with the most common being mutations in the paternally expressed imprinted gene MKRN3. Objective: To identify the genetic etiology of CPP in a large multigenerational family. Design: Linkage analysis followed by whole-genome sequencing was performed in a family with five female members with nonsyndromic CPP. Detailed phenotyping was performed at the time of initial diagnosis and long-term follow-up, and circulating levels of Delta-like 1 homolog (DLK1) were measured in affected individuals. Expression of DLK1 was measured in mouse hypothalamus and in kisspeptin-secreting neuronal cell lines in vitro. Setting: Endocrine clinic of an academic medical center. Patients: Patients with familial CPP were studied. Results: A complex defect of DLK1 (∼14-kb deletion and 269-bp duplication) was identified in this family. This deletion included the 5' untranslated region and the first exon of DLK1, including the translational start site. Only family members who inherited the defect from their father have precocious puberty, consistent with the known imprinting of DLK1. The patients did not demonstrate additional features of the imprinted disorder Temple syndrome except for increased fat mass. Serum DLK1 levels were undetectable in all affected individuals. Dlk1 was expressed in mouse hypothalamus and in kisspeptin neuron-derived cell lines. Conclusion: We identified a genomic defect in DLK1 associated with isolated familial CPP. MKRN3 and DLK1 are both paternally expressed imprinted genes. These findings suggest a role of genomic imprinting in regulating the timing of human puberty.


Assuntos
Hormônio Liberador de Gonadotropina/agonistas , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Membrana/genética , Herança Paterna/genética , Puberdade Precoce/genética , População Negra , Brasil , Proteínas de Ligação ao Cálcio , Criança , Feminino , Deleção de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Proteínas de Membrana/sangue , Linhagem , Reação em Cadeia da Polimerase , Puberdade Precoce/tratamento farmacológico , Análise de Sequência de DNA
7.
Horm Res Paediatr ; 85(3): 207-12, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26625121

RESUMO

AIM: Our aim was to describe the clinical and genetic findings in an adolescent male with isolated follicle-stimulating hormone (FSH) deficiency and demonstrate the efficacy of recombinant human FSH (rhFSH) replacement in this case. METHODS: A 14.5-year-old adolescent male was referred with normal pubertal development and small testes. Serum testosterone, FSH, and luteinising hormone (LH) were measured at baseline and after gonadotropin-releasing hormone (GnRH) stimulation. Testicular biopsy was performed, and rhFSH replacement was administered for 6 months. The patient's FSHß gene was amplified and sequenced. RESULTS: Basal and GnRH-stimulated FSH levels were undetectable, in contrast with increased LH levels under both conditions. Histopathological investigation of a testicular biopsy specimen revealed a reduced number of Sertoli cells, the absence of germ cells, Leydig cell hyperplasia, and a thickened basement membrane in seminiferous tubules. The testicular size changed from 1 ml at baseline to 6 ml after 6 months of rhFSH replacement. Sequencing of the FSHß gene exon 3 revealed a new missense mutation (c.364T>C, resulting in p.Cys122Arg) in a homozygous state in the patient; both parents and a sister carried the same mutation in a heterozygous state. We also compared our case with all similar cases published previously. CONCLUSION: We herein described an adolescent male with isolated FSH deficiency due to a novel FSHß gene mutation associated with a prepubertal testes size and normal virilisation.


Assuntos
Hormônio Foliculoestimulante , Terapia de Reposição Hormonal , Mutação de Sentido Incorreto , Adolescente , Substituição de Aminoácidos , Hormônio Foliculoestimulante/sangue , Hormônio Foliculoestimulante/deficiência , Hormônio Foliculoestimulante/genética , Hormônio Foliculoestimulante/uso terapêutico , Humanos , Células Intersticiais do Testículo/metabolismo , Células Intersticiais do Testículo/patologia , Hormônio Luteinizante/sangue , Masculino , Proteínas Recombinantes/uso terapêutico , Células de Sertoli/metabolismo , Células de Sertoli/patologia , Testosterona/sangue
8.
Arq. bras. endocrinol. metab ; 51(3): 450-456, abr. 2007. tab
Artigo em Português | LILACS | ID: lil-452187

RESUMO

INTRODUÇÃO: Aproximadamente 50 por cento dos pacientes com síndrome de Noonan (SN) apresentam mutações em heterozigose no gene PTPN11. OBJETIVO: Avaliar a freqüência de mutações no PTPN11 em pacientes com SN e analisar a correlação fenótipo-genótipo. PACIENTES: 33 pacientes com SN. MÉTODO: Extração de DNA de leucócitos periféricos e seqüenciamento dos 15 exons do PTPN11. RESULTADOS: Nove diferentes mutações missense no PTPN11, incluindo a mutação P491H, ainda não descrita, foram encontradas em 16 dos 33 pacientes. As características clínicas mais freqüentes dos pacientes com SN foram: pavilhão auricular com rotação incompleta e espessamento da helix (85 por cento), baixa estatura (79 por cento), prega cervical (77 por cento) e criptorquidismo nos meninos (60 por cento). O Z da altura foi de -2,7 ± 1,2 e o do IMC foi de -1 ± 1,4. Os pacientes com mutação no PTPN11 apresentaram maior freqüência de estenose pulmonar do que os pacientes sem mutação (38 por cento vs. 6 por cento, p< 0,05). Pacientes com ou sem mutação no PTPN11 não diferiram em relação à média do Z da altura, Z do IMC, freqüência de alterações torácicas, características faciais, criptorquidia, retardo mental, dificuldade de aprendizado, pico de GH ao teste de estímulo e Z de IGF-1 ou IGFBP-3. CONCLUSÃO: Identificamos mutações no PTPN11 em 48,5 por cento dos pacientes com SN, os quais apresentaram maior freqüência de estenose pulmonar.


INTRODUCTION: Around 50 percent of Noonan syndrome (NS) patients present heterozygous mutations in the PTPN11 gene. AIM: To evaluate the frequency of mutations in the PTPN11 in patients with NS, and perform phenotype-genotype correlation. PATIENTS: 33 NS patients (23 males). METHODS: DNA was extracted from peripheral blood leukocytes, and all 15 PTPN11 exons were directly sequenced. RESULTS: Nine different missense mutations, including the novel P491H, were found in 16 of 33 NS patients. The most frequently observed features in NS patients were posteriorly rotated ears with thick helix (85 percent), short stature (79 percent), webbed neck (77 percent) and cryptorchidism (60 percent) in boys. The mean height SDS was -2.7 ± 1.2 and BMI SDS was -1 ± 1.4. Patients with PTPN11 mutations presented a higher incidence of pulmonary stenosis than patients without mutations (38 percent vs. 6 percent, p< 0.05). Patients with and without mutations did not present differences regarding height SDS, BMI SDS, frequency of thorax deformity, facial characteristics, cryptorchidism, mental retardation, learning disabilities, GH peak at stimulation test and IGF-1 or IGFBP-3 SDS. CONCLUSION: We identified missense mutations in 48.5 percent of the NS patients. There was a positive correlation between the presence of PTPN11 mutations and pulmonary stenosis frequency in NS patients.


Assuntos
Adolescente , Criança , Feminino , Humanos , Masculino , Estatura , Transtornos do Crescimento/etiologia , Mutação de Sentido Incorreto/genética , Síndrome de Noonan/genética , Fenótipo , /genética , Estatura/efeitos dos fármacos , Genótipo , Transtornos do Crescimento/tratamento farmacológico , Hormônio do Crescimento Humano/uso terapêutico , Síndrome de Noonan/complicações , Síndrome de Noonan/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA