Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Oncol Rep ; 51(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38186307

RESUMO

Gastroenteropancreatic neuroendocrine neoplasms (GEP­NEN) are a group of rare tumors whose specific pathogenetic mechanisms of resistance to therapies have not been completely revealed yet. Chemotherapy is the main therapeutic approach in patients with GEP­NEN, however, novel combination regimens and targeted therapy are continuously explored. In the present study, the anticancer effect of a novel Ruthenium (Ru)(II)­Bisdemethoxycurcumin (Ru­bdcurc) compound was evaluated in BON­1 cell line, one of the few cell lines derived from GEP­NEN, largely used in experimental research of this type of tumors. The experimental data revealed that the Ru­bdcurc compound induced cell death in a dose­dependent manner, in vitro. Biochemical studies demonstrated that, in response to the lower dose of treatment, BON­1 cells activated the nuclear factor erythroid 2­related factor 2 (NRF2) pathway with induction of some of its targets including catalase and p62 as well as of the antiapoptotic marker Bcl2, all acting as chemoresistance mechanisms. NRF2 induction associated also with increased expression of endogenous p53 which is reported to be dysfunctional in BON­1 cells and to inhibit apoptosis. Genetic or pharmacologic targeting of NRF2 inhibited the activation of the NRF2 pathway, as well as of endogenous dysfunctional p53, in response to the lower dose of Ru­bdcurc, increasing the cell death. To assess the interplay between NRF2 and dysfunctional p53, genetic targeting of p53 showed reduced activation of the NRF2 pathway in response to the lower dose of Ru­bdcurc, increasing the cell death. These findings identified for the first time a possible dysfunctional p53/NRF2 interplay in BON­1 cell line that can be a novel key determinant in cell resistance to cytotoxic agents to be evaluated also in GEP­NEN.


Assuntos
Antineoplásicos , Carcinoma Neuroendócrino , Curcumina , Tumores Neuroendócrinos , Rutênio , Humanos , Curcumina/farmacologia , Projetos Piloto , Fator 2 Relacionado a NF-E2 , Proteína Supressora de Tumor p53/genética , Antineoplásicos/farmacologia , Tumores Neuroendócrinos/tratamento farmacológico
2.
J Exp Clin Cancer Res ; 42(1): 189, 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37507791

RESUMO

The 5th Workshop IRE on Translational Oncology was held in Rome (Italy) on 27-28 March at the IRCCS Regina Elena National Cancer Institute. This meeting entitled "The New World of RNA diagnostics and therapeutics" highlightes the significant progress in the RNA field made over the last years. Research moved from pure discovery towards the development of diagnostic biomarkers or RNA-base targeted therapies seeking validation in several clinical trials. Non-coding RNAs in particular have been the focus of this workshop due to their unique properties that make them attractive tools for the diagnosis and therapy of cancer.This report collected the presentations of many scientists from different institutions that discussed recent oncology research providing an excellent overview and representative examples for each possible application of RNA as biomarker, for therapy or to increase the number of patients that can benefit from precision oncology treatment.In particular, the meeting specifically emphasized two key features of RNA applications: RNA diagnostic (Blandino, Palcau, Sestito, Díaz Méndez, Cappelletto, Pulito, Monteonofrio, Calin, Sozzi, Cheong) and RNA therapeutics (Dinami, Marcia, Anastasiadou, Ryan, Fattore, Regazzo, Loria, Aharonov).


Assuntos
Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisão , Biomarcadores , Oncologia , Itália
3.
Front Cell Dev Biol ; 8: 572094, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33043004

RESUMO

At the end of abscission, the residual midbody forms the so-called midbody remnant (MBR), a platform affecting cell fate with emerging key role in differentiation, development, and tumorigenicity. Depending on cell type and pathophysiological context, MBRs undergo different outcomes: they can be retained, released, internalized by nearby cells, or removed through autophagy-mediated degradation. Although mechanisms underlying MBR formation, positioning, and processing have been recently identified, their regulation is still largely unknown. Here, we report that the multifunctional kinase HIPK2 regulates MBR processing contributing to MBR removal. In the process of studying the role of HIPK2 in abscission, we observed that, in addition to cytokinesis failure, HIPK2 depletion leads to significant accumulation of MBRs. In particular, we detected comparable accumulation of MBRs after HIPK2 depletion or treatment with the autophagic inhibitor chloroquine. In contrast, single depletion of the two independent HIPK2 abscission targets, extrachromosomal histone H2B and severing enzyme Spastin, only marginally increased MBR retention, suggesting that MBR accumulation is not just linked to cytokinesis failure. We found that HIPK2 depletion leads to (i) increased levels of CEP55, a key effector of both midbody formation and MBR degradation; (ii) decreased levels of the selective autophagy receptors NBR1 and p62/SQSTM1; and (iii) impaired autophagic flux. These data suggest that HIPK2 contributes to MBR processing by regulating its autophagy-mediated degradation.

4.
Cells ; 9(2)2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093146

RESUMO

HIPK2 is a DYRK-like kinase involved in cellular stress response pathways, development, and cell division. Two alternative splice variants of HIPK2, HIPK2-FL and HIPK2-Δe8, have been previously identified as having different protein stability but similar functional activity in the stress response. Here, we describe one additional HIPK2 splice variant with a distinct subcellular distribution and functional activity in cytokinesis. This novel splice variant lacks the last two exons and retains intron13 with a stop codon after 89 bp of the intron, generating a short isoform, HIPK2-S, that is detectable by 2D Western blots. RT-PCR analyses of tissue arrays and tumor samples show that HIPK2-FL and HIPK2-S are expressed in normal human tissues in a tissue-dependent manner and differentially expressed in human colorectal and pancreatic cancers. Gain- and loss-of-function experiments showed that in contrast to HIPK2-FL, HIPK2-S has a diffuse, non-speckled distribution and is not involved in the DNA damage response. Rather, we found that HIPK2-S, but not HIPK2-FL, localizes at the intercellular bridge, where it phosphorylates histone H2B and spastin, both required for faithful cell division. Altogether, these data show that distinct human HIPK2 splice variants are involved in distinct HIPK2-regulated functions like stress response and cytokinesis.


Assuntos
Processamento Alternativo/genética , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Citocinese/genética , Íntrons , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Transporte/genética , Códon de Terminação , Éxons , Células HCT116 , Células HeLa , Histonas/metabolismo , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Fosforilação/genética , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Espastina/metabolismo , Transfecção
5.
Cancer Lett ; 473: 98-106, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-31904480

RESUMO

The faithful inheritance of chromosomes is essential for the propagation of organisms. In eukaryotes, central to this process is the mitotic spindle. Recently, we have identified TRIM8 as a gene aberrantly expressed in gliomas whose expression reduces the clonogenic potential in the patients' glioma cells. TRIM8 encodes an E3 ubiquitin ligase involved in various pathological processes, including hypertrophy, antiviral defense, encephalopathy, and cancer development. To gain insights into the TRIM8 functions, we characterized the TRIM8 interactome in primary mouse embryonic neural stem cells using proteomics. We found that TRIM8 interacts with KIFC1, and KIF11/Eg5, two master regulators of mitotic spindle assembly and cytoskeleton reorganization. By exploring the TRIM8 role in the mitotic spindle machinery, we showed that TRIM8 localizes at the mitotic spindle during mitosis and plays a role in centrosome separation at the beginning of mitosis with a subsequent delay of the mitotic progression and impact on chromosomal stability.


Assuntos
Proteínas de Transporte/metabolismo , Instabilidade Cromossômica , Cinesinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fuso Acromático/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , beta Carioferinas/metabolismo , Aneuploidia , Animais , Proteínas de Transporte/genética , Células Cultivadas , Embrião de Mamíferos , Fibroblastos , Células HEK293 , Humanos , Camundongos , Micronúcleos com Defeito Cromossômico , Mitose , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais , Cultura Primária de Células , Prometáfase/genética , Ligação Proteica/genética , Proteômica
6.
Cell Death Dis ; 10(11): 850, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31699974

RESUMO

Centrosomal p53 has been described for three decades but its role is still unclear. We previously reported that, in proliferating human cells, p53 transiently moves to centrosomes at each mitosis. Such p53 mitotic centrosome localization (p53-MCL) occurs independently from DNA damage but requires ATM-mediated p53Ser15 phosphorylation (p53Ser15P) on discrete cytoplasmic p53 foci that, through MT dynamics, move to centrosomes during the mitotic spindle formation. Here, we show that inhibition of p53-MCL, obtained by p53 depletion or selective impairment of p53 centrosomal localization, induces centrosome fragmentation in human nontransformed cells. In contrast, tumor cells or mouse cells tolerate p53 depletion, as expected, and p53-MCL inhibition. Such tumor- and species-specific behavior of centrosomal p53 resembles that of the recently identified sensor of centrosome-loss, whose activation triggers the mitotic surveillance pathway in human nontransformed cells but not in tumor cells or mouse cells. The mitotic surveillance pathway prevents the growth of human cells with increased chance of making mitotic errors and accumulating numeral chromosome defects. Thus, we evaluated whether p53-MCL could work as a centrosome-loss sensor and contribute to the activation of the mitotic surveillance pathway. We provide evidence that centrosome-loss triggered by PLK4 inhibition makes p53 orphan of its mitotic dock and promotes accumulation of discrete p53Ser15P foci. These p53 foci are required for the recruitment of 53BP1, a key effector of the mitotic surveillance pathway. Consistently, cells from patients with constitutive impairment of p53-MCL, such as ATM- and PCNT-mutant carriers, accumulate numeral chromosome defects. These findings indicate that, in nontransformed human cells, centrosomal p53 contributes to safeguard genome integrity by working as sensor for the mitotic surveillance pathway.


Assuntos
Centrossomo/metabolismo , Mitose , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Animais , Sistemas CRISPR-Cas , Células Cultivadas , Cromossomos Humanos , Humanos , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética
7.
Cells ; 8(11)2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31694230

RESUMO

Histones are constitutive components of nucleosomes and key regulators of chromatin structure. We previously observed that an extrachromosomal histone H2B (ecH2B) localizes at the intercellular bridge (ICB) connecting the two daughter cells during cytokinesis independently of DNA and RNA. Here, we show that ecH2B binds and colocalizes with CHMP4B, a key component of the ESCRT-III machinery responsible for abscission, the final step of cell division. Abscission requires the formation of an abscission site at the ICB where the ESCRT-III complex organizes into narrowing cortical helices that drive the physical separation of sibling cells. ecH2B depletion does not prevent membrane cleavage rather results in abscission delay and accumulation of abnormally long and thin ICBs. In the absence of ecH2B, CHMP4B and other components of the fission machinery, such as IST1 and Spastin, are recruited to the ICB and localize at the midbody. However, in the late stage of abscission, these fission factors fail to re-localize at the periphery of the midbody and the abscission site fails to form. These results show that extrachromosomal activity of histone H2B is required in the formation of the abscission site and the proper localization of the fission machinery.


Assuntos
Divisão Celular/fisiologia , Histonas/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Citocinese/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Células HeLa , Humanos
8.
Cells ; 8(7)2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31284535

RESUMO

Abscission is the final step of cell division, mediating the physical separation of the two daughter cells. A key player in this process is the microtubule-severing enzyme spastin that localizes at the midbody where its activity is crucial to cut microtubules and culminate the cytokinesis. Recently, we demonstrated that HIPK2, a multifunctional kinase involved in several cellular pathways, contributes to abscission and prevents tetraploidization. Here, we show that HIPK2 binds and phosphorylates spastin at serine 268. During cytokinesis, the midbody-localized spastin is phosphorylated at S268 in HIPK2-proficient cells. In contrast, no spastin is detectable at the midbody in HIPK2-depleted cells. The non-phosphorylatable spastin-S268A mutant does not localize at the midbody and cannot rescue HIPK2-depleted cells from abscission defects. In contrast, the phosphomimetic spastin-S268D mutant localizes at the midbody and restores successful abscission in the HIPK2-depleted cells. These results show that spastin is a novel target of HIPK2 and that HIPK2-mediated phosphorylation of spastin contributes to its midbody localization for successful abscission.


Assuntos
Proteínas de Transporte/metabolismo , Citocinese , Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Espastina/metabolismo , Linhagem Celular Tumoral , Humanos , Mutagênese Sítio-Dirigida , Fosforilação , Serina/genética , Serina/metabolismo , Espastina/genética
9.
Oncogene ; 37(26): 3562-3574, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29563611

RESUMO

Cytokinesis, the final phase of cell division, is necessary to form two distinct daughter cells with correct distribution of genomic and cytoplasmic materials. Its failure provokes genetically unstable states, such as tetraploidization and polyploidization, which can contribute to tumorigenesis. Aurora-B kinase controls multiple cytokinetic events, from chromosome condensation to abscission when the midbody is severed. We have previously shown that HIPK2, a kinase involved in DNA damage response and development, localizes at the midbody and contributes to abscission by phosphorylating extrachromosomal histone H2B at Ser14. Of relevance, HIPK2-defective cells do not phosphorylate H2B and do not successfully complete cytokinesis leading to accumulation of binucleated cells, chromosomal instability, and increased tumorigenicity. However, how HIPK2 and H2B are recruited to the midbody during cytokinesis is still unknown. Here, we show that regardless of their direct (H2B) and indirect (HIPK2) binding of chromosomal DNA, both H2B and HIPK2 localize at the midbody independently of nucleic acids. Instead, by using mitotic kinase-specific inhibitors in a spatio-temporal regulated manner, we found that Aurora-B kinase activity is required to recruit both HIPK2 and H2B to the midbody. Molecular characterization showed that Aurora-B directly binds and phosphorylates H2B at Ser32 while indirectly recruits HIPK2 through the central spindle components MgcRacGAP and PRC1. Thus, among different cytokinetic functions, Aurora-B separately recruits HIPK2 and H2B to the midbody and these activities contribute to faithful cytokinesis.


Assuntos
Aurora Quinase B/metabolismo , Proteínas de Transporte/metabolismo , Citocinese/fisiologia , Histonas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Instabilidade Cromossômica/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Células HCT116 , Células HeLa , Humanos , Interferência de RNA , RNA Interferente Pequeno/genética
10.
Oncotarget ; 8(10): 16744-16754, 2017 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-28060750

RESUMO

HIPK2 is a Y-regulated S/T kinase involved in various cellular processes, including cell-fate decision during development and DNA damage response. Cis-autophosphorylation in the activation-loop and trans-autophosphorylation at several S/T sites along the protein are required for HIPK2 activation, subcellular localization, and subsequent posttranslational modifications. The specific function of a few of these autophosphorylations has been recently clarified; however, most of the sites found phosphorylated by mass spectrometry in human and/or mouse HIPK2 are still uncharacterized. In the process of studying HIPK2 in human colorectal cancers, we identified a mutation (T566P) in a site we previously found autophosphorylated in mouse Hipk2. Biochemical and functional characterization of this site showed that compared to wild type (wt) HIPK2, HIPK2-T566P maintains nuclear-speckle localization and has only a mild reduction in kinase and growth arresting activities upon overexpression. Next, we assessed cell response following UV-irradiation or treatment with doxorubicin, two well-known HIPK2 activators, by evaluating cell number and viability, p53-Ser46 phosphorylation, p21 induction, and caspase cleavage. Interestingly, cells expressing HIPK2-T566P mutant did not respond to UV-irradiation, while behaved similarly to wt HIPK2 upon doxorubicin-treatment. Evaluation of HIPK2-T566 phosphorylation status by a T566-phospho-specific antibody showed constitutive phosphorylation in unstressed cells, which was maintained after doxorubicin-treatment but inhibited by UV-irradiation. Taken together, these data show that HIPK2-T566 phosphorylation contributes to UV-induced HIPK2 activity but it is dispensable for doxorubicin response.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Proteínas de Transporte/metabolismo , Doxorrubicina/farmacologia , Osteossarcoma/tratamento farmacológico , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Neoplasias Ósseas/enzimologia , Neoplasias Ósseas/genética , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/efeitos da radiação , Humanos , Camundongos , Osteossarcoma/enzimologia , Osteossarcoma/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Transfecção , Raios Ultravioleta
11.
J Exp Clin Cancer Res ; 32: 95, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24252502

RESUMO

BACKGROUND: Mutations in the DNA damage response (DDR) factors, breast cancer 1 (BRCA1) and BRCA2, sensitize tumor cells to poly(ADP-ribose) polymerase (PARP) inhibitors. The ataxia telangiectasia mutated (ATM) kinase is a key DDR protein whose heterozygous germline mutation is a moderate-risk factor for developing breast cancer. In this study, we examined whether ATM inactivation in breast cancer cell lines confers sensitivity to PARP inhibitors. METHODS: Wild-type BRCA1/2 breast cancer cells (i.e., MCF-7 and ZR-75-1 lines) were genetically manipulated to downregulate ATM expression then assayed for cytostaticity/cytotoxicity upon treatment with PARP inhibitors, olaparib and iniparib. RESULTS: When ATM-depleted cells and their relative controls were treated with olaparib (a competitive PARP-1/2 inhibitor) and iniparib (a molecule originally described as a covalent PARP-1 inhibitor) a different response to the two compounds was observed. ATM-depletion sensitized both MCF-7 and ZR-75-1 cells to olaparib-treatment, as assessed by short and long survival assays and cell cycle profiles. In contrast, iniparib induced only a mild, ATM-dependent cytostatic effect in MCF-7 cells whereas ZR-75-1 cells were sensitive to this drug, independently of ATM inactivation. These latest results might be explained by recent observations indicating that iniparib acts with mechanisms other than PARP inhibition. CONCLUSIONS: These data indicate that ATM-depletion can sensitize breast cancer cells to PARP inhibition, suggesting a potential in the treatment of breast cancers low in ATM protein expression/activity, such as those arising in mutant ATM heterozygous carriers.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias da Mama/genética , Inibidores de Poli(ADP-Ribose) Polimerases , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Proteínas Mutadas de Ataxia Telangiectasia/genética , Benzamidas/farmacologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Reparo do DNA , Feminino , Técnicas de Silenciamento de Genes , Humanos , Células MCF-7 , Ftalazinas/farmacologia , Piperazinas/farmacologia , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Fatores de Risco
12.
J Clin Invest ; 123(3): 1335-42, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23454770

RESUMO

Ataxia-telangiectasia (A-T) is an autosomal recessive neurodegenerative disorder characterized by radiosensitivity, genomic instability, and predisposition to cancer. A-T is caused by biallelic mutations in the ataxia-telangiectasia mutated (ATM) gene, but heterozygous carriers, though apparently healthy, are believed to be at increased risk for cancer and more sensitive to ionizing radiation than the general population. Despite progress in functional and sequencing-based assays, no straightforward, rapid, and inexpensive test is available for the identification of A-T homozygotes and heterozygotes, which is essential for diagnosis, genetic counseling, and carrier prediction. The oncosuppressor p53 prevents genomic instability and centrosomal amplification. During mitosis, p53 localizes at the centrosome in an ATM-dependent manner. We capitalized on the latter finding and established a simple, fast, minimally invasive, reliable, and inexpensive test to determine mutant ATM zygosity. The percentage of mitotic lymphoblasts or PBMCs bearing p53 centrosomal localization clearly discriminated among healthy donors (>75%), A-T heterozygotes (40%-56%), and A-T homozygotes (<30%). The test is specific for A-T, independent of the type of ATM mutations, and recognized tumor-associated ATM polymorphisms. In a preliminary study, our test confirmed that ATM is a breast cancer susceptibility gene. These data open the possibility of cost-effective, early diagnosis of A-T homozygotes and large-scale screenings for heterozygotes.


Assuntos
Ataxia Telangiectasia/diagnóstico , Proteínas de Ciclo Celular/genética , Centrossomo/metabolismo , Proteínas de Ligação a DNA/genética , Heterozigoto , Técnicas de Diagnóstico Molecular , Proteínas Serina-Treonina Quinases/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética , Adulto , Idoso , Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia , Sequência de Bases , Estudos de Casos e Controles , Células Cultivadas , Diagnóstico Diferencial , Técnicas de Genotipagem , Humanos , Leucócitos Mononucleares/metabolismo , Microscopia de Fluorescência , Pessoa de Meia-Idade , Mitose , Mutação de Sentido Incorreto , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA