Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34830054

RESUMO

Chimeric RNAs are often associated with chromosomal rearrangements in cancer. In addition, they are also widely detected in normal tissues, contributing to transcriptomic complexity. Despite their prevalence, little is known about the characteristics and functions of chimeric RNAs. Here, we examine the genetic structure and biological roles of CLEC12A-MIR223HG, a novel chimeric transcript produced by the fusion of the cell surface receptor CLEC12A and the miRNA-223 host gene (MIR223HG), first identified in chronic myeloid leukemia (CML) patients. Surprisingly, we observed that CLEC12A-MIR223HG is not just expressed in CML, but also in a variety of normal tissues and cell lines. CLEC12A-MIR223HG expression is elevated in pro-monocytic cells resistant to chemotherapy and during monocyte-to-macrophage differentiation. We observed that CLEC12A-MIR223HG is a product of trans-splicing rather than a chromosomal rearrangement and that transcriptional activation of CLEC12A with the CRISPR/Cas9 Synergistic Activation Mediator (SAM) system increases CLEC12A-MIR223HG expression. CLEC12A-MIR223HG translates into a chimeric protein, which largely resembles CLEC12A but harbours an altered C-type lectin domain altering key disulphide bonds. These alterations result in differences in post-translational modifications, cellular localization, and protein-protein interactions. Taken together, our observations support a possible involvement of CLEC12A-MIR223HG in the regulation of CLEC12A function. Our workflow also serves as a template to study other uncharacterized chimeric RNAs.


Assuntos
Fusão Gênica , Lectinas Tipo C/genética , Leucemia Mieloide/genética , MicroRNAs/genética , Proteínas Mutantes Quiméricas/genética , Receptores Mitogênicos/genética , Trans-Splicing , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Citarabina/farmacologia , Humanos , Lectinas Tipo C/metabolismo , Leucemia Mieloide/metabolismo , MicroRNAs/metabolismo , Proteínas Mutantes Quiméricas/metabolismo , Receptores Mitogênicos/metabolismo , Ativação Transcricional
2.
Cancer Res ; 81(4): 779-789, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33046441

RESUMO

Intron retention (IR) in cancer was for a long time overlooked by the scientific community, as it was previously considered to be an artifact of a dysfunctional spliceosome. Technological advancements made in the last decade offer unique opportunities to explore the role of IR as a widespread phenomenon that contributes to the transcriptional diversity of many cancers. Numerous studies in cancer have shed light on dysregulation of cellular mechanisms that lead to aberrant and pathologic IR. IR is not merely a mechanism of gene regulation, but rather it can mediate cancer pathogenesis and therapeutic resistance in various human diseases. The burden of IR in cancer is governed by perturbations to mechanisms known to regulate this phenomenon and include epigenetic variation, mutations within the gene body, and splicing factor dysregulation. This review summarizes possible causes for aberrant IR and discusses the role of IR in therapy or as a consequence of disease treatment. As neoepitopes originating from retained introns can be presented on the cancer cell surface, the development of personalized cancer vaccines based on IR-derived neoepitopes should be considered. Ultimately, a deeper comprehension about the origins and consequences of aberrant IR may aid in the development of such personalized cancer vaccines.


Assuntos
Processamento Alternativo/genética , Íntrons/genética , Neoplasias/genética , Neoplasias/terapia , Animais , Vacinas Anticâncer/genética , Vacinas Anticâncer/uso terapêutico , Epigênese Genética/fisiologia , Humanos , Medicina de Precisão/métodos , Medicina de Precisão/tendências , Spliceossomos/genética , Spliceossomos/metabolismo
3.
Cancers (Basel) ; 12(12)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322625

RESUMO

Vast transcriptomics and epigenomics changes are characteristic of human cancers, including leukaemia. At remission, we assume that these changes normalise so that omics-profiles resemble those of healthy individuals. However, an in-depth transcriptomic and epigenomic analysis of cancer remission has not been undertaken. A striking exemplar of targeted remission induction occurs in chronic myeloid leukaemia (CML) following tyrosine kinase inhibitor (TKI) therapy. Using RNA sequencing and whole-genome bisulfite sequencing, we profiled samples from chronic-phase CML patients at diagnosis and remission and compared these to healthy donors. Remarkably, our analyses revealed that abnormal splicing distinguishes remission samples from normal controls. This phenomenon is independent of the TKI drug used and in striking contrast to the normalisation of gene expression and DNA methylation patterns. Most remarkable are the high intron retention (IR) levels that even exceed those observed in the diagnosis samples. Increased IR affects cell cycle regulators at diagnosis and splicing regulators at remission. We show that aberrant splicing in CML is associated with reduced expression of specific splicing factors, histone modifications and reduced DNA methylation. Our results provide novel insights into the changing transcriptomic and epigenomic landscapes of CML patients during remission. The conceptually unanticipated observation of widespread aberrant alternative splicing after remission induction warrants further exploration. These results have broad implications for studying CML relapse and treating minimal residual disease.

4.
Biochem J ; 474(22): 3783-3797, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28986507

RESUMO

Mitochondrial fatty acid synthesis (mtFAS) is a highly conserved pathway essential for mitochondrial biogenesis. The mtFAS process is required for mitochondrial respiratory chain assembly and function, synthesis of the lipoic acid cofactor indispensable for the function of several mitochondrial enzyme complexes and essential for embryonic development in mice. Mutations in human mtFAS have been reported to lead to neurodegenerative disease. The source of malonyl-CoA for mtFAS in mammals has remained unclear. We report the identification of a conserved vertebrate mitochondrial isoform of ACC1 expressed from an ACACA transcript splicing variant. A specific knockdown (KD) of the corresponding transcript in mouse cells, or CRISPR/Cas9-mediated inactivation of the putative mitochondrial targeting sequence in human cells, leads to decreased lipoylation and mitochondrial fragmentation. Simultaneous KD of ACSF3, encoding a mitochondrial malonyl-CoA synthetase previously implicated in the mtFAS process, resulted in almost complete ablation of protein lipoylation, indicating that these enzymes have a redundant function in mtFAS. The discovery of a mitochondrial isoform of ACC1 required for lipoic acid synthesis has intriguing consequences for our understanding of mitochondrial disorders, metabolic regulation of mitochondrial biogenesis and cancer.


Assuntos
Acetil-CoA Carboxilase/metabolismo , Coenzima A Ligases/metabolismo , Malonil Coenzima A/metabolismo , Mitocôndrias/patologia , Acetil-CoA Carboxilase/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Coenzima A Ligases/genética , Sequência Conservada , Regulação Enzimológica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Isoenzimas , Malonil Coenzima A/genética , Camundongos , Mitocôndrias/enzimologia , RNA Interferente Pequeno , Ácido Tióctico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA