Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(1)2021 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467111

RESUMO

(1) Background: Lipid metabolism is a fundamental hallmark of all tumors, especially of breast cancer. Few studies describe the different lipid metabolisms and sensitivities to the microenvironment of breast cancer cell subtypes that influence the proliferation, aggressiveness, and success of therapy. This study describes the impact of lipid microenvironment on endoplasmic reticulum (ER) membrane and metabolic activity in two breast cancer cell lines with Luminal A and triple-negative breast cancer (TNBC) features. (2) Methods: We investigated the peculiar lipid phenotype of a TNBC cell line, MDA-MB-231, and a Luminal A cell line, MCF7, and their different sensitivity to exogenous fatty acids (i.e., palmitic acid (PA) and docosahexaenoic acid (DHA)). Moreover, we verified the impact of exogenous fatty acids on ER lipid composition. (3) Results: The data obtained demonstrate that MDA-MB-231 cells are more sensitive to the lipid microenvironment and that both PA and DHA are able to remodel their ER membranes with consequences on resident enzyme activity. On the contrary, MCF7 cells are less sensitive to PA, whereas they incorporate DHA, although less efficiently than MDA-MB-231 cells. (4) Conclusions: This study sustains the importance of lipid metabolism as an innovative hallmark to discriminate breast cancer subclasses and to develop personalized and innovative pharmacological strategies. The different sensitivities to the lipid environment shown by MCF7 and MDA-MB-231 cells might be related to cell malignancy and chemoresistance onset. In the future, this new approach could lead to a substantial decrease both in deleterious side effects for the patients and in the cost of entire therapeutic treatments coupled with increased therapy efficiency.


Assuntos
Neoplasias da Mama/metabolismo , Retículo Endoplasmático/metabolismo , Ácidos Graxos , Membranas Intracelulares/metabolismo , Neoplasias da Mama/patologia , Retículo Endoplasmático/patologia , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Feminino , Humanos , Membranas Intracelulares/patologia , Células MCF-7
2.
Antioxidants (Basel) ; 9(3)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204441

RESUMO

In recent years, there has been a growing interest in natural antioxidants as replacements of synthetic compounds because of increased safety concerns and worldwide trend toward the usage of natural additives in foods. One of the richest sources of natural antioxidants, nowadays largely studied for their potential to decrease the risk of diseases and to improve oxidative stability of food products, are edible brown seaweeds. Nevertheless, their antioxidant mechanisms are slightly evaluated and discussed. The aims of this study were to suggest possible mechanism(s) of Fucus vesiculosus antioxidant action and to assess its bioactivity during the production of enriched rye snacks. Chemical and cell-based assays indicate that the efficient preventive antioxidant action of Fucus vesiculosus extracts is likely due to not only the high polyphenol content, but also their good Fe2+-chelating ability. Moreover, the data collected during the production of Fucus vesiculosus-enriched rye snacks show that this seaweed can increase, in appreciable measure, the antioxidant potential of enriched convenience cereals. This information can be used to design functional foods enriched in natural antioxidant ingredients in order to improve the health of targeted consumers.

3.
Nutrients ; 11(11)2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31653011

RESUMO

Plasma fatty acids (FAs) and oxidant status contribute to the etiology of sarcopenia in the elderly concurring to age-related muscle loss and elderly frailty through several mechanisms including changes in FA composition within the sarcolemma, promotion of chronic low-grade inflammation, and insulin resistance. The aim of this study was to determine the FA profile and pro-antioxidant status in sarcopenic frail elderly patients enrolled in a nutritional and physical activity program and to evaluate their correlation with clinical markers. Moreover, the possible changes, produced after a short-term clinical protocol, were evaluated. Plasma and erythrocyte FA composition and pro-antioxidant status were analyzed in sarcopenic elderly subjects recruited for the randomized clinical study and treated with a placebo or dietary supplement, a personalized diet, and standardized physical activity. Subjects were tested before and after 30 days of treatment. Pearson correlations between biochemical parameters and patients' characteristics at recruitment indicate interesting features of sarcopenic status such as negative correlation among the plasma FA profile, age, and physical characteristics. Physical activity and dietetic program alone for 30 days induced a decrease of saturated FA concentration with a significant increase of dihomo-gamma-linolenic acid. Supplementation plus physical activity induced a significant decrease of linoleic acid, omega-6 polyunsaturated FAs, and an increase of stearic and oleic acid concentration. Moreover, glutathione reductase activity, which is an indicator of antioxidant status, significantly increased in erythrocytes. Changes over time between groups indicate significant differences for saturated FAs, which suggest that the amino acid supplementation restores FA levels that are consumed during physical activity. A relationship between FA and clinical/metabolic status revealed unique correlations and a specific metabolic and lipidomic fingerprint in sarcopenic elderly. The results indicate the positive beneficial role of supplementation and physical activity on plasma FA status and the antioxidant system as a co-adjuvant approach in sarcopenic, frail, elderly patients.


Assuntos
Antioxidantes/metabolismo , Dieta , Exercício Físico , Ácidos Graxos/sangue , Sarcopenia , Idoso , Humanos
4.
Mol Cancer ; 12: 137, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24225025

RESUMO

BACKGROUND: The activity of P-glycoprotein (Pgp) and multidrug resistance related protein 1 (MRP1), two membrane transporters involved in multidrug resistance of colon cancer, is increased by high amounts of cholesterol in plasma membrane and detergent resistant membranes (DRMs). It has never been investigated whether omega 3 polyunsatured fatty acids (PUFAs), which modulate cholesterol homeostasis in dyslipidemic syndromes and have chemopreventive effects in colon cancer, may affect the response to chemotherapy in multidrug resistant (MDR) tumors. METHODS: We studied the effect of omega 3 PUFAs docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in human chemosensitive colon cancer HT29 cells and in their MDR counterpart, HT29-dx cells. RESULTS: MDR cells, which overexpressed Pgp and MRP1, had a dysregulated cholesterol metabolism, due to the lower expression of ubiquitin E3 ligase Trc8: this produced lower ubiquitination rate of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCoAR), higher cholesterol synthesis, higher cholesterol content in MDR cells. We found that DHA and EPA re-activated Trc8 E3 ligase in MDR cells, restored the ubiquitination rate of HMGCoAR to levels comparable with chemosensitive cells, reduced the cholesterol synthesis and incorporation in DRMs. Omega 3 PUFAs were incorporated in whole lipids as well as in DRMs of MDR cells, and altered the lipid composition of these compartments. They reduced the amount of Pgp and MRP1 contained in DRMs, decreased the transporters activity, restored the antitumor effects of different chemotherapeutic drugs, restored a proper tumor-immune system recognition in response to chemotherapy in MDR cells. CONCLUSIONS: Our work describes a new biochemical effect of omega 3 PUFAs, which can be useful to overcome chemoresistance in MDR colon cancer cells.


Assuntos
Membrana Celular/metabolismo , Colesterol/biossíntese , Neoplasias do Colo/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Hidroximetilglutaril-CoA Redutases/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antibióticos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/imunologia , Ácidos Docosa-Hexaenoicos/metabolismo , Regulação para Baixo , Doxorrubicina/uso terapêutico , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Ácido Eicosapentaenoico/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HT29 , Humanos , Fosforilação , Ubiquitinação
5.
Cell Biochem Biophys ; 64(1): 45-59, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22622660

RESUMO

Epidemiologic and experimental studies suggest that dietary fatty acids influence the development and progression of breast cancer. However, no clear data are present in literature that could demonstrate how n - 3 PUFA can interfere with breast cancer growth. It is suggested that these fatty acids might change the structure of cell membrane, especially of lipid rafts. During this study we treated MCF-7 and MDA-MB-231 cells with AA, EPA, and DHA to assess if they are incorporated in lipid raft phospholipids and are able to change chemical and physical properties of these structures. Our data demonstrate that PUFA and their metabolites are inserted with different yield in cell membrane microdomains and are able to alter fatty acid composition without decreasing the total percentage of saturated fatty acids that characterize these structures. In particular in MDA-MB-231 cells, that displays the highest content of Chol and saturated fatty acids, we observed the lowest incorporation of DHA, probably for sterical reasons; nevertheless DHA was able to decrease Chol and SM content. Moreover, PUFA are incorporated in breast cancer lipid rafts with different specificity for the phospholipid moiety, in particular PUFA are incorporated in PI, PS, and PC phospholipids that may be relevant to the formation of PUFA metabolites (prostaglandins, prostacyclins, leukotrienes, resolvines, and protectines) of phospholipids deriving second messengers and signal transduction activation. The bio-physical changes after n - 3 PUFA incubation have also been highlighted by atomic force microscopy. In particular, for both cell lines the DHA treatment produced a decrease of the lipid rafts in the order of about 20-30 %. It is worth noticing that after DHA incorporation lipid rafts exhibit two different height ranges. In fact, some lipid rafts have a higher height of 6-6.5 nm. In conclusion n - 3 PUFA are able to modify lipid raft biochemical and biophysical features leading to decrease of breast cancer cell proliferation probably through different mechanisms related to acyl chain length and unsaturation. While EPA may contribute to cell apoptosis mainly through decrease of AA concentration in lipid raft phospholipids, DHA may change the biophysical properties of lipid rafts decreasing the content of cholesterol and probably the distribution of key proteins.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Microdomínios da Membrana/química , Microdomínios da Membrana/fisiologia , Apoptose , Ácido Araquidônico/farmacologia , Neoplasias da Mama/química , Proliferação de Células/efeitos dos fármacos , Colesterol/química , Feminino , Humanos , Células MCF-7 , Microdomínios da Membrana/efeitos dos fármacos , Microscopia de Força Atômica , Fosfolipídeos/química , Esfingomielinas/química
6.
PLoS One ; 7(3): e32361, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22412864

RESUMO

Erythrocyte and hemoglobin losses have been frequently observed in humans during space missions; these observations have been designated as "space anemia". Erythrocytes exposed to microgravity have a modified rheology and undergo hemolysis to a greater extent. Cell membrane composition plays an important role in determining erythrocyte resistance to mechanical stress and it is well known that membrane composition might be influenced by external events, such as hypothermia, hypoxia or gravitational strength variations. Moreover, an altered cell membrane composition, in particular in fatty acids, can cause a greater sensitivity to peroxidative stress, with increase in membrane fragility. Solar radiation or low wavelength electromagnetic radiations (such as gamma rays) from the Earth or the space environment can split water to generate the hydroxyl radical, very reactive at the site of its formation, which can initiate chain reactions leading to lipid peroxidation. These reactive free radicals can react with the non-radical molecules, leading to oxidative damage of lipids, proteins and DNA, etiologically associated with various diseases and morbidities such as cancer, cell degeneration, and inflammation. Indeed, radiation constitutes on of the most important hazard for humans during long-term space flights. With this background, we participated to the MDS tissue-sharing program performing analyses on mice erythrocytes flown on the ISS from August to November 2009. Our results indicate that space flight induced modifications in cell membrane composition and increase of lipid peroxidation products, in mouse erythrocytes. Moreover, antioxidant defenses in the flight erythrocytes were induced, with a significant increase of glutathione content as compared to both vivarium and ground control erythrocytes. Nonetheless, this induction was not sufficient to prevent damages caused by oxidative stress. Future experiments should provide information helpful to reduce the effects of oxidative stress exposure and space anemia, possibly by integrating appropriate dietary elements and natural compounds that could act as antioxidants.


Assuntos
Eritrócitos/metabolismo , Estresse Oxidativo , Ausência de Peso/efeitos adversos , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Índices de Eritrócitos , Membrana Eritrocítica/metabolismo , Eritrócitos/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oxirredução/efeitos dos fármacos , Fatores de Tempo
7.
Lipids Health Dis ; 10: 73, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21569413

RESUMO

BACKGROUND: PUFAs are important molecules for membrane order and function; they can modify inflammation-inducible cytokines production, eicosanoid production, plasma triacylglycerol synthesis and gene expression. Recent studies suggest that n-3 PUFAs can be cancer chemopreventive, chemosuppressive and auxiliary agents for cancer therapy. N-3 PUFAs could alter cancer growth influencing cell replication, cell cycle, and cell death. The question that remains to be answered is how n-3 PUFAs can affect so many physiological processes. We hypothesize that n-3 PUFAs alter membrane stability, modifying cellular signalling in breast cancer cells. METHODS: Two lines of human breast cancer cells characterized by different expression of ER and EGFR receptors were treated with AA, EPA or DHA. We have used the MTT viability test and expression of apoptotic markers to evaluate the effect of PUFAs on cancer growth. Phospholipids were analysed by HPLC/GC, to assess n-3 incorporation into the cell membrane. RESULTS: We have observed that EPA and DHA induce cell apoptosis, a reduction of cell viability and the expression of Bcl2 and procaspase-8. Moreover, DHA slightly reduces the concentration of EGFR but EPA has no effect. Both EPA and DHA reduce the activation of EGFR.N-3 fatty acids are partially metabolized in both cell lines; AA is integrated without being further metabolized. We have analysed the fatty acid pattern in membrane phospholipids where they are incorporated with different degrees of specificity. N-3 PUFAs influence the n-6 content and vice versa. CONCLUSIONS: Our results indicate that n-3 PUFA feeding might induce modifications of breast cancer membrane structure that increases the degree of fatty acid unsaturation. This paper underlines the importance of nutritional factors on health maintenance and on disease prevention.


Assuntos
Neoplasias da Mama/patologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/enzimologia , Caspase 8/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/metabolismo , Feminino , Humanos , Fosfolipídeos/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
8.
Mol Pharm ; 8(3): 683-700, 2011 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-21491921

RESUMO

The most frequent drawback of doxorubicin is the onset of drug resistance, due to the active efflux through P-glycoprotein (Pgp). Recently formulations of liposome-encapsulated doxorubicin have been approved for the treatment of tumors resistant to conventional anticancer drugs, but the molecular basis of their efficacy is not known. To clarify by which mechanisms the liposome-encapsulated doxorubicin is effective in drug-resistant cancer cells, we analyzed the effects of doxorubicin and doxorubicin-containing anionic liposomal nanoparticles ("Lipodox") on the drug-sensitive human colon cancer HT29 cells and on the drug-resistant HT29-dx cells. Interestingly, we did not detect any difference in drug accumulation and toxicity between free doxorubicin and Lipodox in HT29 cells, but Lipodox was significantly more effective than doxorubicin in HT29-dx cells, which are rich in Pgp. This effect was lost in HT29-dx cells silenced for Pgp and acquired by HT29 cells overexpressing Pgp. Lipodox was less extruded by Pgp than doxorubicin and inhibited the pump activity. This inhibition was due to a double effect: the liposome shell per se altered the composition of rafts in resistant cells and decreased the lipid raft-associated amount of Pgp, and the doxorubicin-loaded liposomes directly impaired transport and ATPase activity of Pgp. The efficacy of Lipodox was not increased by verapamil and cyclosporin A and was underwent interference by colchicine. Binding assays revealed that Lipodox competed with verapamil for binding Pgp and hampered the interaction of colchicine with this transporter. Site-directed mutagenesis experiments demonstrated that glycine 185 is a critical residue for the direct inhibitory effect of Lipodox on Pgp. Our work describes novel properties of liposomal doxorubicin, investigating the molecular bases that make this formulation an inhibitor of Pgp activity and a vehicle particularly indicated against drug-resistant tumors.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Doxorrubicina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Western Blotting , Linhagem Celular Tumoral , Colchicina/farmacologia , Ciclosporina/farmacologia , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Imunofluorescência , Células HT29 , Humanos , Concentração Inibidora 50 , Mutagênese Sítio-Dirigida , Verapamil/farmacologia
9.
Cell Biol Int ; 35(3): 249-58, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20946105

RESUMO

Numerous studies indicate that microgravity affects cell growth and differentiation in many living organisms, and various processes are modified when cells are placed under conditions of weightlessness. However, until now, there is no coherent explanation for these observations, and little information is available concerning the biomolecules involved. Our aim has been to investigate the protein pattern of Xenopus laevis embryos exposed to simulated microgravity during the first 6 days of development. A proteomic approach was applied to compare the protein profiles of Xenopus embryos developed in simulated microgravity and in normal conditions. Attention was focused on embryos that do not present visible malformations in order to investigate if weightlessness has effects at protein level in the absence of macroscopic alterations. The data presented strongly suggest that some of the major components of the cytoskeleton vary in such conditions. Three major findings are described for the first time: (i) the expression of important factors involved in the organization and stabilization of the cytoskeleton, such as Arp (actin-related protein) 3 and stathmin, is heavily affected by microgravity; (ii) the amount of the two major cytoskeletal proteins, actin and tubulin, do not change in such conditions; however, (iii) an increase in the tyrosine nitration of these two proteins can be detected. The data suggest that, in the absence of morphological alterations, simulated microgravity affects the intracellular movement system of cells by altering cytoskeletal proteins heavily involved in the regulation of cytoskeleton remodelling.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Embrião não Mamífero/metabolismo , Proteínas de Xenopus/metabolismo , Proteína 3 Relacionada a Actina/metabolismo , Actinas/metabolismo , Animais , Eletroforese em Gel Bidimensional , Desenvolvimento Embrionário , Nitratos/química , Nitratos/metabolismo , Fosforilação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Estatmina/metabolismo , Tubulina (Proteína)/metabolismo , Tirosina/metabolismo , Ausência de Peso , Simulação de Ausência de Peso , Xenopus laevis
10.
Cell Biol Int ; 33(8): 893-8, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19426823

RESUMO

Space flights cause a number of patho-physiological changes. Oxidative damage has been demonstrated in astronauts after space flights. Oxidative stress is due to an imbalance between production of oxidant and antioxidative defence. In embryos of Xenopus laevis, the glutathione system is an inducible antioxidant defence. For this reason, we investigated the effect of gravity deprivation on endogenous antioxidant enzymes in X. laevis embryos developed for 6 days in a Random Positioning Machine. The results show that glutathione content and the activity of antioxidant enzymes increase in RPM embryos, suggesting the presence of a protective mechanism. An induction of antioxidant defence might play an important role for animals to adapt to micro-gravitational stress, possibly during actual space flights.


Assuntos
Embrião não Mamífero/metabolismo , Glutationa/metabolismo , Oxirredutases/metabolismo , Animais , Embrião não Mamífero/enzimologia , Estresse Oxidativo , Simulação de Ausência de Peso , Xenopus laevis
11.
Cell Biol Int ; 31(7): 716-23, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17336552

RESUMO

To test the effects of low levels of radiation from space on living organisms, we flew Xenopus laevis embryos at different stages of development on a stratospheric balloon (BI.R.BA mission). After recovery, different parameters were analyzed to assess the effects of flight, with particular regard to oxidative stress damage. Because of failed temperature control during flight, the flight shielded embryos (FC) could not be used for biochemical or morphological comparisons. In contrast, the incubation conditions (i.e. temperature, containers, volumes) for the flight embryos (F) were parallel to those for the ground controls. Mortality data show that younger embryos (16 h) flown on the balloon (F) are more sensitive to radiation exposure than older ones (40 h and 6 days). Exposure during flight lowered the antioxidant potential in all embryos, particularly older ones. These preliminary data demonstrate that flight on a stratospheric balloon might affect antioxidant metabolism, though it is not yet possible to correlate these results with low radiation exposure during flight.


Assuntos
Antioxidantes/metabolismo , Voo Espacial , Ausência de Peso , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , Animais , Catalase/análise , Chaperonina 60/análise , Radiação Cósmica/efeitos adversos , Embrião não Mamífero/anormalidades , Embrião não Mamífero/efeitos da radiação , Glutationa/análise , Glutationa Peroxidase/análise , Glutationa Redutase/análise , Proteínas de Choque Térmico HSP70/análise , Peróxido de Hidrogênio/análise , Fosfatidilcolinas/análise , Fosfatidiletanolaminas/análise , Superóxido Dismutase/análise , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Ausência de Peso/efeitos adversos , Xenopus laevis/anormalidades
12.
Anal Biochem ; 339(2): 257-61, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15797566

RESUMO

Heme (ferric protoporphyrin IX, FP) dissolves very rapidly into the lipid phase of membranes, and a large number of studies have focused attention on its possible toxic effect in whole cells or isolated membranes. However, because of its molecular structure and reactivity, different problems can be encountered during the course of studying biological samples containing FP. In this article, we discuss important interferences by FP and artifacts that can affect the experimental values. First, FP interferes with the Lowry's protein determination; therefore, membranes containing FP are overestimated in their protein content determined by this procedure. Second, freezing membranes at -20 degrees C artifactually increases the local concentration of FP, thereby enhancing FP-induced lipid peroxidation. Third, in the presence of thiol compounds such as N-acetyl cysteine, FP is degraded to products that interfere with the thiobarbituric acid assay, one of the most widely used methods to measure the extent of lipoperoxidation.


Assuntos
Artefatos , Heme/análise , Acetilcisteína/química , Ácido Araquidônico/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Eritrocítica/efeitos dos fármacos , Congelamento , Heme/química , Heme/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Lipídeos de Membrana/química , Micelas , Proteínas/análise , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA