Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37546948

RESUMO

Most human pancreatic ductal adenocarcinoma (PDAC) are not infiltrated with cytotoxic T cells and are highly resistant to immunotherapy. Over 90% of PDAC have oncogenic KRAS mutations, and phosphoinositide 3-kinases (PI3Ks) are direct effectors of KRAS. Our previous study demonstrated that ablation of Pik3ca in KPC (KrasG12D; Trp53R172H; Pdx1-Cre) pancreatic cancer cells induced host T cells to infiltrate and completely eliminate the tumors in a syngeneic orthotopic implantation mouse model. Now, we show that implantation of Pik3ca-/- KPC (named αKO) cancer cells induces clonal expansion of cytotoxic T cells infiltrating the pancreatic tumors. To identify potential molecules that can regulate the activity of these anti-tumor T cells, we conducted an in vivo genome-wide gene-deletion screen using αKO cells implanted in the mouse pancreas. The result shows that deletion of propionyl-CoA carboxylase subunit B gene (Pccb) in αKO cells (named p-αKO) leads to immune evasion, tumor progression and death of host mice. Surprisingly, p-αKO tumors are still infiltrated with clonally expanded CD8+ T cells but they are inactive against tumor cells. However, blockade of PD-L1/PD1 interaction reactivated these clonally expanded T cells infiltrating p-αKO tumors, leading to slower tumor progression and improve survival of host mice. These results indicate that Pccb can modulate the activity of cytotoxic T cells infiltrating some pancreatic cancers and this understanding may lead to improvement in immunotherapy for this difficult-to-treat cancer.

2.
Infect Immun ; 90(4): e0007022, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35311578

RESUMO

Persistent infections generally involve a complex balance between protective immunity and immunopathology. We used a murine model to investigate the role of inflammatory monocytes in immunity and host defense against persistent salmonellosis. Mice exhibit increased susceptibility to persistent infection when inflammatory monocytes cannot be recruited into tissues or when they are depleted at specific stages of persistent infection. Inflammatory monocytes contribute to the pathology of persistent salmonellosis and cluster with other cells in pathogen-containing granulomas. Depletion of inflammatory monocytes during the chronic phase of persistent salmonellosis causes regression of already established granulomas with resultant pathogen growth and spread in tissues. Thus, inflammatory monocytes promote granuloma-mediated control of persistent salmonellosis and may be key to uncovering new therapies for granulomatous diseases.


Assuntos
Monócitos , Infecções por Salmonella , Animais , Granuloma , Camundongos , Receptores CCR2
3.
mBio ; 9(2)2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29666281

RESUMO

A balanced immune response to infection is essential to prevent the pathology and tissue damage that can occur from an unregulated or hyperactive host defense. Interferons (IFNs) are critical mediators of the innate defense to infection, and in this study we evaluated the contribution of a specific gene coding for IFIT2 induced by type I IFNs in a murine model of disseminated Candida albicans Invasive candidiasis is a frequent challenge during immunosuppression or surgical medical interventions, and C. albicans is a common culprit that leads to high rates of mortality. When IFIT2 knockout mice were infected systemically with C. albicans, they were found to have improved survival and reduced fungal burden compared to wild-type mice. One of the mechanisms by which IFIT2 increases the pathological effects of invasive C. albicans appears to be suppression of NADPH oxidase activation. Loss of IFIT2 increases production of reactive oxygen species by leukocytes, and we demonstrate that IFIT2 is a binding partner of a critical regulatory subunit of NADPH oxidase, p67phox Since the administration of IFN has been used therapeutically to combat viral infections, cancer, and multiple sclerosis, we evaluated administration of IFN-ß to mice prior to C. albicans infection. IFN-ß treatment promoted pathology and death from C. albicans infection. We provide evidence that IFIT2 increases the pathological effects of invasive C. albicans and that administration of IFN-ß has deleterious effects during infection.IMPORTANCE The attributable mortality associated with systemic C. albicans infections in health care settings is significant, with estimates greater than 40%. This life-threatening disease is common in patients with weakened immune systems, either due to disease or as a result of therapies. Type I interferons (IFN) are cytokines of the innate defense response that are used as immune modulators in the treatment of specific cancers, viral infections, and multiple sclerosis. In this study, we show using a murine model that the loss of a specific IFN-stimulated gene coding for IFIT2 improves survival following systemic C. albicans infection. This result infers a harmful effect of IFN during C. albicans infection and is supported by our finding that administration of IFN-ß prior to invasive infection promotes fatal pathology. The findings contribute to our understanding of the innate immune response to C. albicans, and they suggest that IFN therapies present a risk factor for disseminated candidiasis.


Assuntos
Candida albicans/crescimento & desenvolvimento , Candidíase Invasiva/patologia , Interferon beta/metabolismo , Proteínas/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Candidíase Invasiva/microbiologia , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Deleção de Genes , Camundongos Knockout , NADPH Oxidases/metabolismo , Ligação Proteica , Proteínas/genética , Proteínas de Ligação a RNA , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA