Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37445697

RESUMO

The microenvironment plays an essential role in multiple myeloma (MM) development, progression, cell proliferation, survival, immunological escape, and drug resistance. Mesenchymal stromal cells and macrophages release tolerogenic cytokines and favor anti-apoptotic signaling pathway activation, while the urokinase plasminogen activator receptor (uPAR) system contributes to migration through an extracellular matrix. Here, we first summarized the role of macrophages and the uPAR system in MM pathogenesis, and then we reported the potential therapeutic effects of uPAR inhibitors in a case series of primary MM-derived adherent cells. Our preliminary results showed that after uPAR inhibitor treatments, interleukein-6 (mean ± SD, 8734.95 ± 4169.2 pg/mL vs. 359.26 ± 393.8 pg/mL, pre- vs. post-treatment; p = 0.0012) and DKK-1 levels (mean ± SD, 7005.41 ± 6393.4 pg/mL vs. 61.74 ± 55.2 pg/mL, pre- vs. post-treatment; p = 0.0043) in culture medium were almost completely abolished, supporting further investigation of uPAR blockade as a therapeutic strategy for MM treatment. Therefore, uPAR inhibitors could exert both anti-inflammatory and pro-immunosurveillance activity. However, our preliminary results need further validation in additional in vitro and in vivo studies.


Assuntos
Mieloma Múltiplo , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Humanos , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Transdução de Sinais , Macrófagos/metabolismo , Microambiente Tumoral
2.
Cancers (Basel) ; 13(18)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34572739

RESUMO

Large granular lymphocyte (LGL) leukemia is a lymphoproliferative disorder of mature T or NK cells frequently associated with autoimmune disorders and other hematological conditions, such as myelodysplastic syndromes. Immunophenotype of LGL cells is similar to that of effector memory CD8+ T cells with T-cell receptor (TCR) clonality defined by molecular and/or flow cytometric analysis. Vß usage by flow cytometry can identify clonal TCR rearrangements at the protein level, and is fast, sensitive, and almost always available in every Hematology Center. Moreover, Vß usage can be associated with immunophenotypic characterization of LGL clone in a multiparametric staining, and clonal kinetics can be easily monitored during treatment and follow-up. Finally, Vß usage by flow cytometry might identify LGL clones silently underlying other hematological conditions, and routine characterization of Vß skewing might identify recurrent TCR rearrangements that might trigger aberrant immune responses during hematological or autoimmune conditions.

3.
Open Med (Wars) ; 16(1): 672-682, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981851

RESUMO

Cytomegalovirus (CMV) reactivation during chemotherapy or after organ or hematopoietic stem cell transplantation is a major cause of morbidity and mortality, and the risk of reactivation increases with patients' age. Bendamustine, an alkylating agent currently used for treatment of indolent and aggressive non-Hodgkin lymphomas, can augment the risk of secondary infections including CMV reactivation. In this real-world study, we described an increased incidence of CMV reactivation in older adults (age >60 years old) with newly diagnosed and relapsed/refractory indolent and aggressive diseases treated with bendamustine-containing regimens. In particular, patients who received bendamustine plus rituximab and dexamethasone were at higher risk of CMV reactivation, especially when administered as first-line therapy and after the third course of bendamustine. In addition, patients with CMV reactivation showed a significant depression of circulating CD4+ T cell count and anti-CMV IgG levels during active infection, suggesting an impairment of immune system functions which are not able to properly face viral reactivation. Therefore, a close and early monitoring of clinical and laboratory findings might improve clinical management and outcome of non-Hodgkin lymphoma patients by preventing the development of CMV disease in a subgroup of subjects treated with bendamustine more susceptible to viral reactivation.

4.
Biomedicines ; 9(4)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917307

RESUMO

Wilm's tumor 1 (WT1), a zinc-finger transcription factor and an epigenetic modifier, is frequently overexpressed in several hematologic disorders and solid tumors, and it has been proposed as diagnostic and prognostic marker of acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). However, the exact role of WT1 in leukemogenesis and disease progression remains unclear. In this real-world evidence retrospective study, we investigated prognostic role of WT1-mRNA expression levels in AML and MDS patients and correlations with complete blood counts, flow cytometry counts, and molecular features. A total of 71 patients (AML, n = 46; and MDS, n = 25) were included in this study, and WT1 levels were assessed at diagnosis, during treatment and follow-up. We showed that WT1 expression levels were inversely correlated with normal hemopoiesis in both AML and MDS, and positively associated with blast counts. Flow cytometry was more sensitive and specific in distinguishing normal myeloid cells from neoplastic counterpart even just using linear parameters and CD45 expression. Moreover, we showed that a simple integrated approach combining blast counts by flow cytometry, FLT3 mutational status, and WT1 expression levels might be a useful tool for a better prognostic definition in both AML and MDS patients.

5.
Int J Mol Sci ; 22(8)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923400

RESUMO

Proteolysis is a key event in several biological processes; proteolysis must be tightly controlled because its improper activation leads to dramatic consequences. Deregulation of proteolytic activity characterizes many pathological conditions, including cancer. The plasminogen activation (PA) system plays a key role in cancer; it includes the serine-protease urokinase-type plasminogen activator (uPA). uPA binds to a specific cellular receptor (uPAR), which concentrates proteolytic activity at the cell surface, thus supporting cell migration. However, a large body of evidence clearly showed uPAR involvement in the biology of cancer cell independently of the proteolytic activity of its ligand. In this review we will first describe this multifunctional molecule and then we will discuss how uPAR can sustain most of cancer hallmarks, which represent the biological capabilities acquired during the multistep cancer development. Finally, we will illustrate the main data available in the literature on uPAR as a cancer biomarker and a molecular target in anti-cancer therapy.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Biomarcadores Tumorais/genética , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , Receptores de Ativador de Plasminogênio Tipo Uroquinase/química , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética
6.
Cells ; 9(12)2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255171

RESUMO

The urokinase (uPA) receptor (uPAR) plays a key role in cell migration. We previously showed that uPAR-negative HEK-293 cells efficiently migrate toward serum but, after uPAR ectopic expression, migrate only in a uPAR-dependent manner. In fact, migration of uPAR-transfected HEK-293 (uPAR-293) cells is impaired by anti-uPAR antibodies, without recovery of the uPAR-independent migration mechanisms formerly active. Prostate carcinoma PC3 cells, which express high endogenous uPAR levels, migrated only through a uPAR-dependent mechanism; in fact, the silencing of uPAR expression inhibited their migration. We hypothesize a crucial role of the uPAR glycosyl-phosphatidyl-inositol (GPI) tail, which promotes uPAR partitioning to lipid rafts, in uPAR-controlled cell migration. Here, we show that removal of the uPAR GPI-tail, or lipid rafts disruption by methyl-beta-cyclodextrin impairs migration of PC3 cells, incapable of uPAR-independent migration, whereas it restores uPAR-independent migration in uPAR-293 cells. We then show that, in PC3 cells, both uPAR signaling partners, ß1 integrins and receptors for formylated peptides (FPRs), partly associate with lipid rafts. Inhibition of their interaction with uPAR impairs this association and impairs cell migration. Interestingly, blocking uPAR association with FPRs also impairs ß1 integrin partitioning to lipid rafts, whereas blocking its association with ß1 integrins has no effect on FPRs partitioning. On these bases, we propose that uPAR controls cell migration by connecting ß1 integrins and FPRs and, through its GPI tail, by driving them into lipid rafts, thus promoting pro-migratory signals. uPAR-mediated partitioning of integrins to lipid rafts is strictly dependent on uPAR association with FPRs.


Assuntos
Movimento Celular/fisiologia , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Células HEK293 , Humanos , Integrina beta1/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Células PC-3 , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , beta-Ciclodextrinas/farmacologia
7.
Int J Mol Sci ; 21(5)2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143270

RESUMO

Amyloid precursor protein (APP) is processed along both the nonamyloidogenic pathway preventing amyloid beta peptide (Aß) production and the amyloidogenic pathway, generating Aß, whose accumulation characterizes Alzheimer's disease. Items of evidence report that the intracellular trafficking plays a key role in the generation of Aß and that the 37/67 kDa LR (laminin receptor), acting as a receptor for Aß, may mediate Aß-pathogenicity. Moreover, findings indicating interaction between the receptor and the key enzymes involved in the amyloidogenic pathway suggest a strong link between 37/67 kDa LR and APP processing. We show herein that the specific 37/67 kDa LR inhibitor, NSC48478, is able to reversibly affect the maturation of APP in a pH-dependent manner, resulting in the partial accumulation of the immature APP isoforms (unglycosylated/acetylated forms) in the endoplasmic reticulum (ER) and in transferrin-positive recycling endosomes, indicating alteration of the APP intracellular trafficking. These effects reveal NSC48478 inhibitor as a novel small molecule to be tested in disease conditions, mediated by the 37/67 kDa LR and accompanied by inactivation of ERK1/2 (extracellular signal-regulated kinases) signalling and activation of Akt (serine/threonine protein kinase) with consequent inhibition of GSK3ß.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Naftóis/farmacologia , Neurônios/metabolismo , Receptores de Laminina/antagonistas & inibidores , Proteínas Ribossômicas/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Endossomos/efeitos dos fármacos , Glicosilação , Complexo de Golgi/efeitos dos fármacos , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Laminina , Camundongos , Microscopia de Fluorescência , Proteínas Priônicas , Processamento de Proteína Pós-Traducional , Transporte Proteico , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
8.
Oncotarget ; 9(45): 27823-27834, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29963240

RESUMO

Urokinase receptor (uPAR) expression is up-regulated and represents a negative prognostic marker in most cancers. We previously reported that uPAR and CXCR4 can be regulated by common microRNAs in leukemia cells. Transcripts containing response elements for shared microRNAs in their 3'UTR may regulate their availability. We investigated uPAR 3'UTR capability to recruit microRNAs, thus regulating the expression of their targets. uPAR 3'UTR transfection in KG1 leukemia cells up-regulates the expression of endogenous uPAR. Transfection of uPAR 3'UTR, inserted downstream a reporter gene, increases uPAR expression and simultaneously down-regulates the reporter gene expression. Transfection of uPAR 3'UTR also increases CXCR4 expression; accordingly, uPAR silencing induces down-regulation of CXCR4 expression, through a mechanism involving Dicer, the endoribonuclease required for microRNA maturation. Transfection of uPAR 3'UTR also increases the expression of pro-tumoral factors and modulates cell adhesion and migration, consistently with the capability of uPAR3'UTR-recruited microRNAs to target several and different transcripts and, thus, functions. Finally, we found 3'UTR-containing variants of uPAR transcript in U937 leukemia cells, which show higher levels of uPAR expression as compared to KG1 cells, in which these variants are not detected. These results suggest that uPAR mRNA may recruit oncosuppressor microRNAs, allowing the expression of their targets.

9.
Sci Rep ; 7(1): 9388, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28839232

RESUMO

The urokinase-type plasminogen activator receptor (uPAR) is a GPI-anchored cell membrane receptor that focuses urokinase (uPA) proteolytic activity on the cell surface. Its expression is increased in many human cancers, including non-small cell lung cancer (NSCLC) and colorectal cancer (CRC), and correlates with a poor prognosis and early invasion and metastasis. uPAR is able to control, through a cross-talk with tyrosine kinase receptors, the shift between tumor dormancy and proliferation, that usually precedes metastasis formation. Therefore, we investigated the role of uPAR expression in RAS mutated NSCLC and CRC cells. In this study we provided evidence, for the first time, that RAS mutational condition is functionally correlated to uPAR overexpression in NSCLC and CRC cancer cell lines and patient-derived tissue samples. Moreover, oncogenic features related to uPAR overexpression in RAS mutated NSCLC and CRC, such as adhesion, migration and metastatic process may be targeted, in vitro and in vivo, by new anti-uPAR small molecules, specific inhibitors of uPAR-vitronectin interaction. Therefore, anti-uPAR drugs could represent an effective pharmacological strategy for NSCLC and CRC patients carrying RAS mutations.


Assuntos
Regulação Neoplásica da Expressão Gênica , Mutação , Neoplasias/genética , Neoplasias/patologia , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Proteínas ras/genética , Animais , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas ras/metabolismo
10.
Curr Pharm Des ; 23(32): 4745-4757, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28699539

RESUMO

The 67 kDa high affinity laminin receptor (67LR) is a non-integrin cell surface receptor for laminin, the major component of basement membranes. Interactions between 67LR and laminin play a major role in mediating cell adhesion, migration, proliferation and survival. 67LR derives from homo- or hetero-dimerization of a 37 kDa cytosolic precursor (37LRP), most probably by fatty acid acylation. Interestingly, 37LRP, also called p40 or OFA/iLR (oncofetal antigen/immature laminin receptor), is a multifunctional protein with a dual activity in the cytoplasm and in the nucleus. In the cytoplasm, 37LRP it is associated with the 40S subunit of ribosome, playing a critical role in protein translation and ribosome biogenesis while in the nucleus it is tightly associated with nuclear structures, and bound to components of the cytoskeleton, such as tubulin and actin. 67LR is mainly localized in the cell membrane, concentrated in lipid rafts. Acting as a receptor for laminin is not the only function of 67LR; indeed, it also acts as a receptor for viruses, bacteria and prions. 67LR expression is increased in neoplastic cells and correlates with an enhanced invasive and metastatic potential. The primary function of 67LR in cancer is to promote tumor cell adhesion to basement membranes, the first step in the invasion-metastasis cascade. Thus, 67LR is overexpressed in neoplastic cells as compared to their normal counterparts and its overexpression is considered a molecular marker of metastatic aggressiveness in cancer of many tissues, including breast, lung, ovary, prostate, stomach, thyroid and also in leukemia and lymphoma. Thus, inhibiting 67LR binding to laminin could be a feasible approach to block cancer progression. Here, we review the current understanding of the structure and function of this molecule, highlighting its role in cancer invasion and metastasis and reviewing the various therapeutic options targeting this receptor that could have a promising future application.


Assuntos
Terapia de Alvo Molecular , Neoplasias/terapia , Receptores de Laminina/metabolismo , Animais , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Humanos , Metástase Neoplásica , Neoplasias/patologia , Medicina de Precisão/métodos
11.
Transl Med UniSa ; 15: 15-21, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27896223

RESUMO

The urokinase (uPA)-type plasminogen activator receptor (uPAR) is a GPI-anchored receptor that focuses urokinase (uPA) proteolytic activity on the cell surface. uPAR also regulates cell adhesion, migration and proliferation, protects from apoptosis and contributes to epithelial mesenchymal transition (EMT), independently of uPA enzymatic activity. Indeed, uPAR interacts with beta1, beta2 and beta3 integrins, thus regulating their activities. uPAR cross-talks with receptor tyrosine kinases through integrins and regulates cancer cell dormancy, proliferation and angiogenesis. Moreover, uPAR mediates uPA-dependent cell migration and chemotaxis induced by fMet-Leu-Phe (fMLF), through its association with fMLF-receptors (fMLF-Rs). Further, uPAR is an adhesion receptor because it binds vitronectin (VN), a component of provisional extracellular matrix. High uPAR expression predicts for more aggressive disease in several cancer types for its ability to increase invasion and metastasis. In fact, uPAR has been hypothesized to be the link between tumor cell dormancy and proliferation that usually precedes the onset of metastasis. Thus, inhibiting uPAR could be a feasible approach to affect tumor growth and metastasis. Here, we review the more recent advances in the development of uPAR-targeted anti-cancer therapeutic agents suitable for further optimization or ready for the evaluation in early clinical trials.

12.
Transl Med UniSa ; 15: 8-14, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27896222

RESUMO

The 67 kDa laminin receptor (67LR) is a non-integrin cell surface receptor for laminin (LM) that derives from a 37 kDa precursor (37LRP). 67LR expression is increased in neoplastic cells and correlates with an enhanced invasive and metastatic potentialin many human solid tumors, recommending this receptor as a new promising target for cancer therapy. This is supported by in vivo studies showing that 67LR downregulation reduces tumour cell proliferation and tumour formation by inducing apoptosis. 67LR association with the anti-apoptotic protein PED/PEA-15 activates a signal transduction pathway, leading to cell proliferation and resistance to apoptosis. However, the main function of 67LR is to enhance tumor cell adhesion to the LM of basement membranes and cell migration, two crucial events in the metastasis cascade. Thus, inhibition of 67LR binding to LM has been proved to be a feasible approach to block metastatic cancer cell spread. Despite accumulating evidences on 67LR overexpression in hematologic malignancies, 67LR role in these diseases has not been clearly defined. Here, we review 67LR expression and function in normal and malignant hematopoietic cells, 67LR role and prognostic impact in hematological malignancies and first attempts in targeting its activity.

13.
Transl Med UniSa ; 15: 34-41, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27896225

RESUMO

Mast cell and basophils express the high affinity receptor for IgE (FcɛRI) and are primary effector cells of allergic disorders. The urokinase (uPA)-mediated plasminogen activation system is involved in physiological and pathological events based on cell migration and tissue remodelling, such as inflammation, wound healing, angiogenesis and metastasis. uPA is a serine protease that binds uPAR, a high affinity glycosyl-phosphatidyl-inositol (GPI)-anchored receptor. uPAR focuses uPA activity at the cell surface and activates intracellular signaling through lateral interactions with integrins, receptor tyrosine kinases and the G-protein-coupled family of fMLF chemotaxis receptors (FPRs). We investigated the expression of the uPA-uPAR system and its functional interaction with FPRs in human mast cells (MCs). Differently from basophils, MCs produced uPA that was able to induce their chemotaxis. Indeed, MCs also expressed uPAR, both in the intact and in a cleaved form (DII-DIII-uPAR) that can expose, at the N-terminus, the SRSRY sequence, able to interact with FPRs and to mediate cell chemotaxis. MCs also expressed mRNAs for FPRs that were functionally active; indeed, uPA and a soluble peptide (uPAR84-95), containing the SRSRY chemotactic sequence of uPAR and able to interact with FPRs, were able to induce MCs chemotaxis. Thus, uPA is a potent chemoattractant for MCs acting through the exposure of the chemotactic epitope of uPAR, that is an endogenous ligand for FPRs. The same mechanism could be involved in VEGF-A secretion by human MCs, also induced by uPA and uPAR84-95 stimulation.

14.
Oncotarget ; 7(37): 60206-60217, 2016 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-27517491

RESUMO

Hematopoietic stem cells (HSCs) reside in bone marrow (BM) and can be induced to mobilize into the circulation for transplantation. Homing and lodgement into BM of transplanted HSCs are the first critical steps in their engraftment and involve multiple interactions between HSCs and the BM microenvironment.uPAR is a three domain receptor (DIDIIDIII) which binds urokinase, vitronectin, integrins. uPAR can be cleaved and shed from the cell surface generating full-length and cleaved soluble forms (suPAR and DIIDIII-suPAR). DIIDIII-suPAR can bind fMLF receptors through the SRSRY sequence (residues 88-92).We previously reported the involvement of soluble uPAR in HSC mobilization. We now investigate its possible role in HSC homing and engraftment.We show similar levels of circulating full-length suPAR in healthy donors and in acute myeloid leukemia (AML) patients before and after the pre-transplant conditioning regimen. By contrast, levels of circulating DIIDIII-suPAR in AML patients are higher as compared to controls and significantly decrease after the conditioning.We found that suPAR and uPAR84-95, a uPAR-derived peptide which mimics active DIIDIII-suPAR, induce a significant increase in Long Term Culture (LTC)-Initiating Cells (ICs) and in the release of clonogenic progenitors from LTCs of CD34+ HSCs. Further, suPAR increases adhesion and survival of CD34+ KG1 AML cells, whereas uPAR84-95 increases their proliferation.Thus, circulating DIIDIII-suPAR, strongly increased in HSC mobilization, is indeed down-regulated by pre-transplant conditioning, probably to favour HSC homing. BM full-length suPAR and DIIDIII-suPAR may be involved in HSC lodgement within the BM by contributing to a suitable microenvironment.


Assuntos
Células da Medula Óssea/metabolismo , Medula Óssea/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Nicho de Células-Tronco , Adulto , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Leucemia Mieloide Aguda/sangue , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/terapia , Pessoa de Meia-Idade , Peptídeos/farmacologia , Receptores de Ativador de Plasminogênio Tipo Uroquinase/sangue , Receptores de Ativador de Plasminogênio Tipo Uroquinase/química , Condicionamento Pré-Transplante/métodos , Adulto Jovem
15.
Oncotarget ; 7(26): 40073-40084, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27223077

RESUMO

Inhibition of the mechanistic target of rapamycin (mTOR) is a promising treatment strategy for several cancer types. Rapamycin derivatives such as everolimus are allosteric mTOR inhibitors acting through interaction with the intracellular immunophilin FKBP12, a prolyl isomerase with different cellular functions. Although mTOR inhibitors have significantly improved survival of different cancer patients, resistance and lack of predictive factors of response remain unsolved issues. To elucidate the mechanisms of resistance to everolimus, we evaluated Met activation in everolimus-sensitive/resistant human cancer cells, in vitro and in vivo. Biochemical and computational analyses were performed. Everolimus-resistant cells were xenografted into mice (10/group) and studied for their response to everolimus and Met inhibitors. The statistical significance of the in vitro results was evaluated by Student's t test.Everolimus reduced Met phosphorylation in everolimus-sensitive cells. This event was mediated by the formation of a Met-FKBP12 complex, which in turn is disrupted by everolimus. Aberrant Met activation in everolimus-resistant cells and overexpression of wild-type/mutant Met caused everolimus resistance. Pharmacological inhibition and RNA silencing of Met are effective in condition of everolimus resistance (P<0.01). In mice xenografted with everolimus-resistant cells, the combination of everolimus with the Met inhibitor PHA665752 reduced tumor growth and induced a statistically significant survival advantage (combination vs control P=0.0005).FKBP12 binding is required for full Met activation and everolimus can inhibit Met. Persistent Met activation might sustain everolimus resistance. These results identify a novel everolimus mechanism of action and suggest the development of clinical strategies based on Met inhibitors in everolimus-resistant cancers.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Everolimo/farmacologia , Regulação Neoplásica da Expressão Gênica , Receptores Proteína Tirosina Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Sítio Alostérico , Animais , Linhagem Celular Tumoral , Feminino , Células HCT116 , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias , Fosforilação , Interferência de RNA
16.
Oncotarget ; 6(28): 26090-103, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26325669

RESUMO

Resistance to the EGFR tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib, often related to Ras or secondary EGFR mutations, is a relevant clinical issue in Non-Small Cell Lung Cancer (NSCLC). Although Src TK has been involved in such resistance, clinical development of its inhibitors has been so far limited. To better define the molecular targets of the Src TKIs saracatinib, dasatinib and bosutinib, we used a variety of in vitro/in vivo studies. Kinase assays supported by docking analysis demonstrated that all the compounds directly inhibit EGFR TK variants. However, in live cells only saracatinib efficiently reduced EGFR activation, while dasatinib was the most effective agent in inhibiting Src TK. Consistently, a pronounced anti-proliferative effect was achieved with saracatinib, in EGFR mutant cells, or with dasatinib, in wt EGFR/Ras mutant cells, poorly dependent on EGFR and erlotinib-resistant. We then identified the most effective drug combinations to overcome resistance to EGFR inhibitors, both in vitro and in nude mice: in T790M EGFR erlotinib-resistant cells, saracatinib with the anti-EGFR mAb cetuximab; in Ras mutant erlotinib-resistant models, dasatinib with the MEK inhibitor selumetinib. Src inhibitors may act with different mechanisms in NSCLCs, depending on EGFR/Ras mutational profile, and may be integrated with EGFR or MEK inhibitors for different cohorts of NSCLCs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas ras/metabolismo , Quinases da Família src/antagonistas & inibidores , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzodioxóis/administração & dosagem , Benzodioxóis/farmacologia , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Cetuximab/administração & dosagem , Cetuximab/farmacologia , Dasatinibe/administração & dosagem , Dasatinibe/farmacologia , Receptores ErbB/genética , Cloridrato de Erlotinib/administração & dosagem , Cloridrato de Erlotinib/farmacologia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/metabolismo , Quinazolinas/administração & dosagem , Quinazolinas/farmacologia , Interferência de RNA , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas ras/genética , Quinases da Família src/genética , Quinases da Família src/metabolismo
17.
J Cell Mol Med ; 19(9): 2262-72, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26082201

RESUMO

The urokinase-type plasminogen activator (uPA) receptor (uPAR) focuses uPA proteolytic activity on the cell membrane, promoting localized degradation of extracellular matrix (ECM), and binds vitronectin (VN), mediating cell adhesion to the ECM. uPAR-bound uPA and VN induce proteolysis-independent intracellular signalling, regulating cell adhesion, migration, survival and proliferation. uPAR cross-talks with CXCR4, the receptor for the stroma-derived factor 1 chemokine. CXCR4 is crucial in the trafficking of hematopoietic stem cells from/to the bone marrow, which involves also uPAR. Both uPAR and CXCR4 are expressed in acute myeloid leukaemia (AML), with a lower expression in undifferentiated and myeloid subsets, and higher expression in myelomonocytic and promyelocytic subsets. We hypothesized a microRNA (miR)-mediated co-regulation of uPAR and CXCR4 expression, which could allow their cross-talk at the cell surface. We identified three miRs, miR-146a, miR-335 and miR-622, regulating the expression of both uPAR and CXCR4 in AML cell lines. Indeed, these miRs directly target the 3'untranslated region of both uPAR- and CXCR4-mRNAs; accordingly, uPAR/CXCR4 expression is reduced by their overexpression in AML cells and increased by their specific inhibitors. Overexpression of all three miRs impairs migration, invasion and proliferation of myelomonocytic cells. Interestingly, we observed an inverse relationship between uPAR/CXCR4 expression and miR-146a and miR-335 levels in AML blasts, suggesting their possible role in the regulation of uPAR/CXCR4 expression also in vivo.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia/genética , Receptores CXCR4/genética , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Células HeLa , Humanos , Leucemia/patologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , MicroRNAs , Invasividade Neoplásica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores CXCR4/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo
18.
Oncotarget ; 6(20): 18116-33, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26062445

RESUMO

The 67 kDa laminin receptor (67LR) is a non-integrin receptor for laminin (LM) that derives from a 37 kDa precursor (37LRP). 67LR expression is increased in neoplastic cells and correlates with an enhanced invasive and metastatic potential. We used structure-based virtual screening (SB-VS) to search for 67LR inhibitory small molecules, by focusing on a 37LRP sequence, the peptide G, able to specifically bind LM. Forty-six compounds were identified and tested on HEK-293 cells transfected with 37LRP/67LR (LR-293 cells). One compound, NSC47924, selectively inhibited LR-293 cell adhesion to LM with IC50 and Ki values of 19.35 and 2.45 µmol/L. NSC47924 engaged residues W176 and L173 of peptide G, critical for specific LM binding. Indeed, NSC47924 inhibited in vitro binding of recombinant 37LRP to both LM and its YIGSR fragment. NSC47924 also impaired LR-293 cell migration to LM and cell invasion. A subsequent hierarchical similarity search with NSC47924 led to the identification of additional four compounds inhibiting LR-293 cell binding to LM: NSC47923, NSC48478, NSC48861, and NSC48869, with IC50 values of 1.99, 1.76, 3.4, and 4.0 µmol/L, respectively, and able to block in vitro cancer cell invasion. These compounds are promising scaffolds for future drug design and discovery efforts in cancer progression.


Assuntos
Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Movimento Celular/efeitos dos fármacos , Descoberta de Drogas/métodos , Laminina/antagonistas & inibidores , Naftóis/farmacologia , Neoplasias/tratamento farmacológico , Receptores de Laminina/antagonistas & inibidores , Proteínas Ribossômicas/antagonistas & inibidores , Compostos de Anilina/química , Antineoplásicos/química , Adesão Celular/efeitos dos fármacos , Simulação por Computador , Desenho Assistido por Computador , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Laminina/metabolismo , Modelos Moleculares , Naftóis/química , Invasividade Neoplásica , Neoplasias/metabolismo , Neoplasias/patologia , Ligação Proteica , Conformação Proteica , Receptores de Laminina/química , Receptores de Laminina/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Transfecção
19.
Oncotarget ; 5(12): 4154-69, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24980826

RESUMO

The clinical relevance of the urokinase receptor (uPAR) as a prognostic marker in ovarian cancer is well documented. We had shown that the uPAR sequence corresponding to 84-95 residues, linking D1 and D2 domains (uPAR84-95), drives cell migration and angiogenesis in a protease-independent manner. This study was aimed at defining the contribution of uPAR84-95 sequence to invasion of ovarian cancer cells. Now, we provide evidence that the ability of uPAR-expressing ovarian cancer cells to cross extra-cellular matrix and mesothelial monolayers is prevented by specific inhibitors of the uPAR84-95 sequence. To specifically investigate uPAR84-95 function, uPAR-negative CHO-K1 cells were stably transfected with cDNAs coding for uPAR D2 and D3 regions exposing (uPARD2D3) or lacking (uPAR∆D2D3) the 84-95 sequence. CHO-K1/D2D3 cells were able to cross matrigel, mesothelial and endothelial monolayers more efficiently than CHO-K1/∆D2D3 cells, which behave as CHO-K1 control cells. When orthotopically implanted in nude mice, tumor nodules generated by CHO-K1/D2D3 cells spreading to peritoneal cavity were more numerous as compared to CHO-K1/∆D2D3 cells. Ovarian tumor size and intra-tumoral microvessel density were significantly reduced in the absence of uPAR84-95. Our results indicate that cell associated uPAR promotes growth and abdominal dissemination of ovarian cancer cells mainly through its uPAR84-95 sequence.


Assuntos
Neoplasias Ovarianas/genética , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Nus , Prognóstico , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Transfecção
20.
Mol Cancer Ther ; 12(8): 1402-16, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23699658

RESUMO

Besides focusing urokinase (uPA) proteolytic activity on the cell membrane, the uPA receptor (uPAR) is able to bind vitronectin, via a direct binding site. Furthermore, uPAR interacts with other cell surface receptors, such as integrins, receptor tyrosine kinases, and chemotaxis receptors, triggering cell-signaling pathways that promote tumor progression. The ability of uPAR to coordinate binding and degradation of extracellular matrix (ECM) and cell signaling makes it an attractive therapeutic target in cancer. We used structure-based virtual screening (SB-VS) to search for small molecules targeting the uPAR-binding site for vitronectin. Forty-one compounds were identified and tested on uPAR-negative HEK-293 epithelial cells transfected with uPAR (uPAR-293 cells), using the parental cell line transfected with the empty vector (V-293 cells) as a control. Compounds 6 and 37 selectively inhibited uPAR-293 cell adhesion to vitronectin and the resulting changes in cell morphology and signal transduction, without exerting any effect on V-293 cells. Compounds 6 and 37 inhibited uPAR-293 cell binding to vitronectin with IC50 values of 3.6 and 1.2 µmol/L, respectively. Compounds 6 and 37 targeted S88 and R91, key residues for uPAR binding to vitronectin but also for uPAR interaction with the fMLF family of chemotaxis receptors (fMLF-Rs). As a consequence, compounds 6 and 37 impaired uPAR-293 cell migration toward fetal calf serum (FCS), uPA, and fMLF, likely by inhibiting the interaction between uPAR and FPR1, the high affinity fMLF-R. Both compounds blocked in vitro ECM invasion of several cancer cell types, thus representing new promising leads for pharmaceuticals in cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/metabolismo , Neoplasias/patologia , Receptores de Ativador de Plasminogênio Tipo Uroquinase/química , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Vitronectina/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Sítios de Ligação , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Modelos Moleculares , Conformação Molecular , Invasividade Neoplásica , Ligação Proteica/efeitos dos fármacos , Receptores de Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA