Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(7): 2905-2920, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35142215

RESUMO

Drugs targeting SARS-CoV-2 could have saved millions of lives during the COVID-19 pandemic, and it is now crucial to develop inhibitors of coronavirus replication in preparation for future outbreaks. We explored two virtual screening strategies to find inhibitors of the SARS-CoV-2 main protease in ultralarge chemical libraries. First, structure-based docking was used to screen a diverse library of 235 million virtual compounds against the active site. One hundred top-ranked compounds were tested in binding and enzymatic assays. Second, a fragment discovered by crystallographic screening was optimized guided by docking of millions of elaborated molecules and experimental testing of 93 compounds. Three inhibitors were identified in the first library screen, and five of the selected fragment elaborations showed inhibitory effects. Crystal structures of target-inhibitor complexes confirmed docking predictions and guided hit-to-lead optimization, resulting in a noncovalent main protease inhibitor with nanomolar affinity, a promising in vitro pharmacokinetic profile, and broad-spectrum antiviral effect in infected cells.


Assuntos
Antivirais/farmacologia , Proteases 3C de Coronavírus/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , SARS-CoV-2/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Antivirais/metabolismo , Antivirais/farmacocinética , Domínio Catalítico , Chlorocebus aethiops , Proteases 3C de Coronavírus/química , Inibidores de Cisteína Proteinase/metabolismo , Inibidores de Cisteína Proteinase/farmacocinética , Avaliação Pré-Clínica de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , SARS-CoV-2/enzimologia , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacocinética , Células Vero
2.
Front Chem ; 9: 768535, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858945

RESUMO

Bioorthogonal chemistry allows rapid and highly selective reactivity in biological environments. The copper-catalyzed azide-alkyne cycloaddition (CuAAC) is a classic bioorthogonal reaction routinely used to modify azides or alkynes that have been introduced into biomolecules. Amber suppression is an efficient method for incorporating such chemical handles into proteins on the ribosome, in which noncanonical amino acids (ncAAs) are site specifically introduced into the polypeptide in response to an amber (UAG) stop codon. A variety of ncAA structures containing azides or alkynes have been proven useful for performing CuAAC chemistry on proteins. To improve CuAAC efficiency, biologically incorporated alkyne groups can be reacted with azide substrates that contain copper-chelating groups. However, the direct incorporation of copper-chelating azides into proteins has not been explored. To remedy this, we prepared the ncAA paz-lysine (PazK), which contains a picolyl azide motif. We show that PazK is efficiently incorporated into proteins by amber suppression in mammalian cells. Furthermore, PazK-labeled proteins show improved reactivity with alkyne reagents in CuAAC.

3.
Angew Chem Int Ed Engl ; 58(5): 1417-1421, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30506956

RESUMO

Colibactin is a small molecule produced by certain bacterial species of the human microbiota that harbour the pks genomic island. Pks+ bacteria induce a genotoxic phenotype in eukaryotic cells and have been linked with colorectal cancer progression. Colibactin is produced in a benign, prodrug form which, prior to export, is enzymatically matured by the producing bacteria to its active form. Although the complete structure of colibactin has not been determined, key structural features have been described including an electrophilic cyclopropane motif, which is believed to alkylate DNA. To investigate the influence of the putative "warhead" and the prodrug strategy on genotoxicity, a series of photolabile colibactin probes were prepared that upon irradiation induced a pks+ like phenotype in HeLa cells. Furthermore, results from DNA cross-linking and imaging studies of clickable analogues enforce the hypothesis that colibactin effects its genotoxicity by directly targeting DNA.


Assuntos
Sondas Moleculares/farmacologia , Peptídeos/farmacologia , Policetídeos/farmacologia , Ciclo Celular/efeitos dos fármacos , Dano ao DNA , Células HeLa , Humanos , Sondas Moleculares/química , Estrutura Molecular , Peptídeos/química , Processos Fotoquímicos , Policetídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA