Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(15): 9028-9048, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39041433

RESUMO

Increasingly many studies reveal how ribosome composition can be tuned to optimally translate the transcriptome of individual cell types. In this study, we investigated the expression pattern, structure within the ribosome and effect on protein synthesis of the ribosomal protein paralog 39L (RPL39L). With a novel mass spectrometric approach we revealed the expression of RPL39L protein beyond mouse germ cells, in human pluripotent cells, cancer cell lines and tissue samples. We generated RPL39L knock-out mouse embryonic stem cell (mESC) lines and demonstrated that RPL39L impacts the dynamics of translation, to support the pluripotency and differentiation, spontaneous and along the germ cell lineage. Most differences in protein abundance between WT and RPL39L KO lines were explained by widespread autophagy. By CryoEM analysis of purified RPL39 and RPL39L-containing ribosomes we found that, unlike RPL39, RPL39L has two distinct conformations in the exposed segment of the nascent peptide exit tunnel, creating a distinct hydrophobic patch that has been predicted to support the efficient co-translational folding of alpha helices. Our study shows that ribosomal protein paralogs provide switchable modular components that can tune translation to the protein production needs of individual cell types.


Assuntos
Biossíntese de Proteínas , Dobramento de Proteína , Proteínas Ribossômicas , Ribossomos , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/química , Animais , Camundongos , Humanos , Ribossomos/metabolismo , Conformação Proteica em alfa-Hélice , Camundongos Knockout , Células-Tronco Embrionárias Murinas/metabolismo , Diferenciação Celular/genética
2.
Autophagy ; 17(7): 1729-1752, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32559118

RESUMO

Turnover of cellular organelles, including endoplasmic reticulum (ER) and mitochondria, is orchestrated by an efficient cellular surveillance system. We have identified a mechanism for dual regulation of ER and mitochondria under stress. It is known that AMFR, an ER E3 ligase and ER-associated degradation (ERAD) regulator, degrades outer mitochondrial membrane (OMM) proteins, MFNs (mitofusins), via the proteasome and triggers mitophagy. We show that destabilized mitochondria are almost devoid of the OMM and generate "mitoplasts". This brings the inner mitochondrial membrane (IMM) in the proximity of the ER. When AMFR levels are high and the mitochondria are stressed, the reticulophagy regulatory protein RETREG1 participates in the formation of the mitophagophore by interacting with OPA1. Interestingly, OPA1 and other IMM proteins exhibit similar RETREG1-dependent autophagosomal degradation as AMFR, unlike most of the OMM proteins. The "mitoplasts" generated are degraded by reticulo-mito-phagy - simultaneously affecting dual organelle turnover.Abbreviations: AMFR/GP78: autocrine motility factor receptor; BAPTA: 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid; BFP: blue fluorescent protein; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; CNBr: cyanogen bromide; ER: endoplasmic reticulum; ERAD: endoplasmic-reticulum-associated protein degradation; FL: fluorescence, GFP: green fluorescent protein; HA: hemagglutinin; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; IMM: inner mitochondrial membrane; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MFN: mitofusin, MGRN1: mahogunin ring finger 1; NA: numerical aperature; OMM: outer mitochondrial membrane; OPA1: OPA1 mitochondrial dynamin like GTPase; PRNP/PrP: prion protein; RER: rough endoplasmic reticulum; RETREG1/FAM134B: reticulophagy regulator 1; RFP: red fluorescent protein; RING: really interesting new gene; ROI: region of interest; RTN: reticulon; SEM: standard error of the mean; SER: smooth endoplasmic reticulum; SIM: structured illumination microscopy; SQSTM1/p62: sequestosome 1; STED: stimulated emission depletion; STOML2: stomatin like 2; TOMM20: translocase of outer mitochondrial membrane 20; UPR: unfolded protein response.


Assuntos
Autofagossomos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Receptores do Fator Autócrino de Motilidade/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Lisossomos/metabolismo , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase em Tempo Real
3.
Biochim Biophys Acta Mol Cell Res ; 1867(9): 118741, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32422153

RESUMO

Tumor susceptibility gene 101 (TSG101), an ESCRT-I protein, is implicated in multiple cellular processes and its functional depletion can lead to blocked lysosomal degradation, cell cycle arrest, demyelination and neurodegeneration. Here, we show that loss of TSG101 results in endoplasmic reticulum (ER) stress and this causes ER membrane remodelling (EMR). This correlates with an expansion of ER, increased vacuolation, altered relative distribution of the rough and smooth ER and disruption of three-way junctions. Blocked lysosomal degradation due to TSG101 depletion leads to ER stress and Ca2+ leakage from ER stores, causing destabilization of actin cytoskeleton. Inhibiting Ca2+ release from the ER by blocking ryanodine receptors (RYRs) with Dantrolene partially rescues the ER stress phenotypes. Hence, in this study we have identified the involvement of TSG101 in modulating ER stress mediated remodelling by engaging the actin cytoskeleton. This is significant because functional depletion of TSG101 effectuates ER-stress, perturbs the structure, mobility and function of the ER, all aspects closely associated with neurodegenerative diseases. SUMMARY STATEMENT: We show that tumor susceptibility gene (TSG) 101 regulates endoplasmic reticulum (ER) stress and its membrane remodelling. Loss of TSG101 perturbs structure, mobility and function of the ER as a consequence of actin destabilization.


Assuntos
Proteínas de Ligação a DNA/genética , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Mutação com Perda de Função/genética , Fatores de Transcrição/genética , Biomarcadores , Cálcio/metabolismo , Proteínas de Ligação a DNA/metabolismo , Estresse do Retículo Endoplasmático , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Humanos , Lisossomos/metabolismo , Transporte Proteico , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA