Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 293(26): 10042-10058, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29674318

RESUMO

α-Galactosidases (EC 3.2.1.22) are retaining glycosidases that cleave terminal α-linked galactose residues from glycoconjugate substrates. α-Galactosidases take part in the turnover of cell wall-associated galactomannans in plants and in the lysosomal degradation of glycosphingolipids in animals. Deficiency of human α-galactosidase A (α-Gal A) causes Fabry disease (FD), a heritable, X-linked lysosomal storage disorder, characterized by accumulation of globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3). Current management of FD involves enzyme-replacement therapy (ERT). An activity-based probe (ABP) covalently labeling the catalytic nucleophile of α-Gal A has been previously designed to study α-galactosidases for use in FD therapy. Here, we report that this ABP labels proteins in Nicotiana benthamiana leaf extracts, enabling the identification and biochemical characterization of an N. benthamiana α-galactosidase we name here A1.1 (gene accession ID GJZM-1660). The transiently overexpressed and purified enzyme was a monomer lacking N-glycans and was active toward 4-methylumbelliferyl-α-d-galactopyranoside substrate (Km = 0.17 mm) over a broad pH range. A1.1 structural analysis by X-ray crystallography revealed marked similarities with human α-Gal A, even including A1.1's ability to hydrolyze Gb3 and lyso-Gb3, which are not endogenous in plants. Of note, A1.1 uptake into FD fibroblasts reduced the elevated lyso-Gb3 levels in these cells, consistent with A1.1 delivery to lysosomes as revealed by confocal microscopy. The ease of production and the features of A1.1, such as stability over a broad pH range, combined with its capacity to degrade glycosphingolipid substrates, warrant further examination of its value as a potential therapeutic agent for ERT-based FD management.


Assuntos
Doença de Fabry/enzimologia , Nicotiana/enzimologia , alfa-Galactosidase/metabolismo , Biocatálise , Membrana Celular/metabolismo , Doença de Fabry/patologia , Feminino , Fibroblastos/metabolismo , Humanos , Masculino , Nicotiana/citologia , alfa-Galactosidase/genética
2.
Front Plant Sci ; 8: 1026, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28680430

RESUMO

Deficiency of α-galactosidase A (α-GAL) causes Fabry disease (FD), an X-linked storage disease of the glycosphingolipid globtriaosylcerammide (Gb3) in lysosomes of various cells and elevated plasma globotriaosylsphingosine (Lyso-Gb3) toxic for podocytes and nociceptive neurons. Enzyme replacement therapy is used to treat the disease, but clinical efficacy is limited in many male FD patients due to development of neutralizing antibodies (Ab). Therapeutic use of modified lysosomal α-N-acetyl-galactosaminidase (α-NAGAL) with increased α-galactosidase activity (α-NAGALEL) has therefore been suggested. We transiently produced in Nicotiana benthamiana leaves functional α-GAL, α-NAGAL, and α-NAGALEL enzymes for research purposes. All enzymes could be visualized with activity-based probes covalently binding in their catalytic pocket. Characterization of purified proteins indicated that α-NAGALEL is improved in activity toward artificial 4MU-α-galactopyranoside. Recombinant α-NAGALEL and α-NAGAL are not neutralized by Ab-positive FD serum tested and are more stable in human plasma than α-GAL. Both enzymes hydrolyze the lipid substrates Gb3 and Lyso-Gb3 accumulating in Fabry patients. The addition to FD sera of α-NAGALEL, and to a lesser extent that of α-NAGAL, results in a reduction of the toxic Lyso-Gb3. In conclusion, our study suggests that modified α-NAGALEL might reduce excessive Lyso-Gb3 in FD serum. This neo-enzyme can be produced in Nicotiana benthamiana and might be further developed for the treatment of FD aiming at reduction of circulating Lyso-Gb3.

3.
DNA Repair (Amst) ; 10(5): 483-96, 2011 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-21393072

RESUMO

UvrA is the initial DNA damage-sensing protein in bacterial nucleotide excision repair. Each protomer of the UvrA dimer contains two ATPase domains, that belong to the family of ATP-binding cassette domains. Three structural domains are inserted in these ATPase domains: the insertion domain (ID) and UvrB binding domain (in ATP domain I) and the zinc-finger motif (in ATP domain II). In this paper we analyze the function of the ID and the zinc finger motif in damage specific binding of Escherichia coli UvrA. We show that the ID is not essential for damage discrimination, but it does stabilize UvrA on the DNA, most likely by forming a clamp around the DNA helix. We present evidence that two conserved arginine residues in the ID contact the phosphate backbone of the DNA, leading to strand separation after the ATPase-driven movement of the ID's. Remarkably, deletion of the ID generated a phenotype in which UV-survival strongly depends on the presence of photolyase, indicating that UvrA and photolyase form a ternary complex on a CPD-lesion. The zinc-finger motif is shown to be important for the transfer of the damage recognition signal to the ATPase of UvrA. In the absence of this domain the coupling between DNA binding and ATP hydrolysis is completely lost. Mutation of the phenylalanine residue in the tip of the zinc-finger domain resulted in a protein in which the ATPase was already triggered when binding to an undamaged site. As the zinc-finger motif is connected to the DNA binding regions on the surface of UvrA, this strongly suggests that damage-specific binding to these regions results in a rearrangement of the zinc-finger motif, which in its turn activates the ATPase. We present a model how damage recognition is transmitted to activate ATP hydrolysis in ATP binding domain I of the protein.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Dano ao DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Dedos de Zinco , Sequência de Aminoácidos , Arginina/metabolismo , Reparo do DNA/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Desoxirribodipirimidina Fotoliase/metabolismo , Escherichia coli/efeitos da radiação , Hidrólise , Viabilidade Microbiana/efeitos da radiação , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Conformação Proteica , Alinhamento de Sequência , Raios Ultravioleta/efeitos adversos
4.
DNA Repair (Amst) ; 9(11): 1176-86, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-20864419

RESUMO

The UvrA protein is the initial DNA damage-sensing protein in bacterial nucleotide excision repair and detects a wide variety of structurally unrelated lesions. After initial recognition of DNA damage, UvrA loads the UvrB protein onto the DNA. This protein then verifies the presence of a lesion, after which UvrA is released from the DNA. UvrA contains two ATPase domains, both belonging to the ABC ATPase superfamily. We have determined the activities of two mutants, in which a single domain was deactivated. Inactivation of either one ATPase domain in Escherichia coli UvrA results in a complete loss of ATPase activity, indicating that both domains function in a cooperative way. We could show that this ATPase activity is not required for the recognition of bulky lesions by UvrA, but it does promote the specific binding to the less distorting cyclobutane-pyrimidine dimer (CPD). The two ATPase mutants also show a difference in UvrB-loading, depending on the length of the DNA substrate. The ATPase domain I mutant was capable of loading UvrB on a lesion in a 50 bp fragment, but this loading was reduced on a longer substrate. For the ATPase domain II mutant the opposite was found: UvrB could not be loaded on a 50 bp substrate, but this loading was rescued when the length of the fragment was increased. This differential loading of UvrB by the two ATPase mutants could be related to different interactions between the UvrA and UvrB subunits.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Dano ao DNA , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Escherichia coli/genética , Hidrólise , Modelos Moleculares , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/metabolismo
5.
J Biol Chem ; 284(14): 9612-23, 2009 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-19208629

RESUMO

Helicases play critical roles in all aspects of nucleic acid metabolism by catalyzing the remodeling of DNA and RNA structures. UvrD is an abundant helicase in Escherichia coli with well characterized functions in mismatch and nucleotide excision repair and a possible role in displacement of proteins such as RecA from single-stranded DNA. The mismatch repair protein MutL is known to stimulate UvrD. Here we show that the nucleotide excision repair proteins UvrA and UvrB can together stimulate UvrD-catalyzed unwinding of a range of DNA substrates containing strand discontinuities, including forked DNA substrates. The stimulation is specific for UvrD, as UvrAB failed to stimulate Rep helicase, a UvrD homologue. Moreover, although UvrAB can promote limited strand displacement, stimulation of UvrD did not require the strand displacement function of UvrAB. We conclude that UvrAB, like MutL, modulate UvrD helicase activity. This stimulation likely plays a role in DNA strand and protein displacement by UvrD in nucleotide excision repair. Promotion of UvrD-catalyzed unwinding of nicked duplexes by UvrAB may also explain the need for UvrAB and UvrD in Okazaki fragment processing in cells lacking DNA polymerase I. More generally, these data support the idea that helicase activity is regulated in vivo, with helicases acting as part of multisubunit complexes rather than in isolation.


Assuntos
Adenosina Trifosfatases/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Adenosina Trifosfatases/genética , Biocatálise , DNA/metabolismo , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Especificidade por Substrato
6.
Mol Cell ; 29(1): 122-33, 2008 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-18158267

RESUMO

The nucleotide excision repair pathway corrects many structurally unrelated DNA lesions. Damage recognition in bacteria is performed by UvrA, a member of the ABC ATPase superfamily whose functional form is a dimer with four nucleotide-binding domains (NBDs), two per protomer. In the 3.2 A structure of UvrA from Bacillus stearothermophilus, we observe that the nucleotide-binding sites are formed in an intramolecular fashion and are not at the dimer interface as is typically found in other ABC ATPases. UvrA also harbors two unique domains; we show that one of these is required for interaction with UvrB, its partner in lesion recognition. In addition, UvrA contains three zinc modules, the number and ligand sphere of which differ from previously published models. Structural analysis, biochemical experiments, surface electrostatics, and sequence conservation form the basis for models of ATP-modulated dimerization, UvrA-UvrB interaction, and DNA binding during the search for lesions.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Cristalografia por Raios X , DNA Helicases/química , Reparo do DNA , Proteínas de Ligação a DNA/química , Endodesoxirribonucleases/química , Geobacillus stearothermophilus/enzimologia , Mapeamento de Interação de Proteínas , Difosfato de Adenosina/química , Adenosina Trifosfatases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Sequência Conservada , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dimerização , Endodesoxirribonucleases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Eletricidade Estática , Dedos de Zinco
7.
Biochemistry ; 46(31): 9080-8, 2007 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-17630776

RESUMO

UvrB plays a key role in bacterial nucleotide excision repair. It is the ultimate damage-binding protein that interacts with both UvrA and UvrC. The oligomeric state of UvrB and the UvrAB complex have been subject of debate for a long time. Using fluorescence resonance energy transfer (FRET) between GFP and YFP fused to the C-terminal end of Escherichia coli UvrB, we unambiguously show that in solution two UvrB subunits bind to UvrA, most likely as part of a UvrA2B2 complex. This complex is most stable when both UvrA and UvrB are in the ATP-bound form. Analysis of a truncated form of UvrB shows that binding to UvrA promotes dimerization of the two C-terminal domain 4 regions of UvrB. The presence of undamaged DNA leads to dissociation of the UvrA2B2 complex, but when the ATPase site of UvrB is inactivated, the complex is trapped on the DNA. When the complex is bound to a damaged site, FRET between the two UvrB subunits could still be detected, but only as long as UvrA remains associated. Dissociation of UvrA from the damage-bound UvrB dimer leads to the reduction of the magnitude of the FRET signal, indicating that the domain 4 regions no longer interact. We propose that the UvrA-induced dimerization of the domain 4 regions serves to shield these domains from premature UvrC binding. Only after specific binding of the UvrB dimer to a damaged site and subsequent release of UvrA is the contact between the domain 4 regions broken, allowing recruitment of UvrC and subsequent incisions.


Assuntos
Endodesoxirribonucleases/metabolismo , Proteínas de Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , DNA/química , DNA/metabolismo , Dano ao DNA , DNA Helicases/química , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dimerização , Endodesoxirribonucleases/química , Endodesoxirribonucleases/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Deleção de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Ligação Proteica/efeitos da radiação , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Raios Ultravioleta
8.
J Biol Chem ; 281(4): 2184-94, 2006 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-16282327

RESUMO

UvrB, the ultimate damage-binding protein in bacterial nucleotide excision repair is capable of binding a vast array of structurally unrelated lesions. A beta-hairpin structure in the protein plays an important role in damage-specific binding. In this paper we have monitored DNA conformational alterations in the UvrB-DNA complex, using the fluorescent adenine analogue 2-aminopurine. We show that binding of UvrB to a DNA fragment with cholesterol damage moves the base adjacent to the lesion at the 3' side into an extrahelical position. This extrahelical base is not accessible for acrylamide quenching, suggesting that it inserts into a pocket of the UvrB protein. Also the base opposite this flipped base is extruded from the DNA helix. The degree of solvent exposure of both residues varies with the type of cofactor (ADP/ATP) bound by UvrB. Fluorescence of the base adjacent to the damage is higher when UvrB is in the ADP-bound configuration, but concomitantly this UvrB-DNA complex is less stable. In the ATP-bound form the UvrB-DNA complex is very stable and in this configuration the base in the non-damaged strand is more exposed. Hairpin residue Tyr-95 is specifically involved in base flipping in the non-damaged strand. We present evidence that this conformational change in the non-damaged strand is important for 3' incision by UvrC.


Assuntos
DNA Helicases/química , Reparo do DNA , Proteínas de Escherichia coli/química , 2-Aminopurina/química , Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Sequência de Bases , DNA/química , Dano ao DNA , DNA Helicases/metabolismo , Proteínas de Escherichia coli/metabolismo , Hidrólise , Microscopia de Fluorescência , Conformação Molecular , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Secundária de Proteína , Homologia de Sequência do Ácido Nucleico , Solventes/química , Espectrometria de Fluorescência , Tirosina/química
9.
DNA Repair (Amst) ; 4(6): 699-713, 2005 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-15886069

RESUMO

UvrB is the ultimate damage-binding protein in bacterial nucleotide excision repair. Previous AFM experiments have indicated that UvrB binds to a damage as a dimer. In this paper we visualize for the first time a UvrB dimer in a gel retardation assay, with the second subunit (B2) more loosely bound than the subunit (B1) that interacts with the damage. A beta-hairpin motif in UvrB plays an important role in damage specific binding. Alanine substitutions of Y92 or Y93 in the beta-hairpin result in proteins that kill E. coli cells as a consequence of incision in non-damaged DNA. Apparently, both residues are needed to prevent binding of UvrB to non-damaged DNA. The lethality of Y93A results from UvrC-mediated incisions, whereas that of Y92A is due to incisions by Cho. This difference could be ascribed to a difference in stability of the B2 subunit in the mutant UvrB-DNA complexes. We show that for 3' incision UvrC needs to displace this second UvrB subunit from the complex, whereas Cho seems capable to incise the dimer-complex. Footprint analysis of the contacts of UvrB with damaged DNA revealed that the B2 subunit interacts with the flanking DNA at the 3' side of the lesion. The B2 subunit of mutant Y92A appeared to be more firmly associated with the DNA, indicating that even when B1 is bound to a lesion, the B2 subunit probes the adjacent DNA for presence of damage. We propose this to be a reflection of the process that the UvrB dimer uses to find lesions in the DNA. In addition to preventing binding to non-damaged DNA, the Y92 and Y93 residues appear also important for making specific contacts (of B1) with the damaged site. We show that the concerted action of the two tyrosines lead to a conformational change in the DNA surrounding the lesion, which is required for the 3' incision reaction.


Assuntos
Proteínas de Bactérias/metabolismo , Dano ao DNA , DNA Helicases/metabolismo , Reparo do DNA , DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/isolamento & purificação , Adenosina Trifosfatases/metabolismo , Alanina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Sítios de Ligação , Pegada de DNA , DNA Helicases/química , DNA Helicases/genética , DNA Helicases/isolamento & purificação , DNA Bacteriano/efeitos da radiação , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas de Ligação a DNA/metabolismo , Dimerização , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Plasmídeos , Ligação Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Especificidade por Substrato , Tirosina/química , Raios Ultravioleta
10.
EMBO J ; 21(15): 4196-205, 2002 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12145219

RESUMO

It is generally accepted that the damage recognition complex of nucleotide excision repair in Escherichia coli consists of two UvrA and one UvrB molecule, and that in the preincision complex UvrB binds to the damage as a monomer. Using scanning force microscopy, we show here that the damage recognition complex consists of two UvrA and two UvrB subunits, with the DNA wrapped around one of the UvrB monomers. Upon binding the damage and release of the UvrA subunits, UvrB remains a dimer in the preincision complex. After association with the UvrC protein, one of the UvrB monomers is released. We propose a model in which the presence of two UvrB subunits ensures damage recognition in both DNA strands. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one of the UvrB monomers, which will subsequently probe one of the DNA strands for the presence of a lesion. When no damage is found, the DNA will wrap around the second UvrB subunit, which will check the other strand for aberrations.


Assuntos
Adenosina Trifosfatases/fisiologia , Dano ao DNA , DNA Helicases/fisiologia , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/fisiologia , Endodesoxirribonucleases/fisiologia , Proteínas de Escherichia coli/fisiologia , Escherichia coli/enzimologia , Complexos Multienzimáticos/fisiologia , Adenosina Trifosfatases/química , Adenosina Trifosfatases/ultraestrutura , DNA Helicases/química , DNA Helicases/ultraestrutura , DNA Bacteriano/química , DNA Bacteriano/ultraestrutura , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/ultraestrutura , Dimerização , Endodesoxirribonucleases/química , Endodesoxirribonucleases/ultraestrutura , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestrutura , Substâncias Macromoleculares , Microscopia de Força Atômica , Complexos Multienzimáticos/química , Complexos Multienzimáticos/ultraestrutura , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Subunidades Proteicas , Relação Estrutura-Atividade
11.
Nucleic Acids Res ; 30(11): 2492-500, 2002 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12034838

RESUMO

Nucleotide excision repair in Escherichia coli involves formation of the UvrB-DNA complex and subsequent DNA incisions on either site of the damage by UvrC. In this paper, we studied the incision of substrates with different damages in varying sequence contexts. We show that there is not always a correlation between the incision efficiency and the stability of the UvrB-DNA complex. Both stable and unstable UvrB-DNA complexes can be efficiently incised. However some lesions that give rise to stable UvrB-DNA complexes do result in a very low incision. We present evidence that this poor incision is due to sterical hindrance of the damage itself. In its C-terminal region UvrC contains two helix-hairpin-helix (HhH) motifs. Mutational analysis shows that these motifs constitute one functional unit, probably folded as one structural unit; the (HhH)2 domain. This (HhH)2 domain was previously shown to be important for the 5' incision on a substrate containing a (cis-Pt).GG adduct, but not for 3' incision. Here we show that, mainly depending on the sequence context of the lesion, the (HhH)2 domain can be important for 3' and/or 5' incision. We propose that the (HhH)2 domain stabilises specific DNA structures required for the two incisions, thereby contributing to the flexibility of the UvrABC repair system.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , DNA Helicases/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Escherichia coli/enzimologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência de Bases , DNA/genética , DNA/metabolismo , Endodesoxirribonucleases/genética , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mentol/metabolismo , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Alinhamento de Sequência , Relação Estrutura-Atividade , Especificidade por Substrato , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA