RESUMO
We performed a forward genetic screen to discover peptides that specifically target breast cancer cells using a Penetratin tagged, random 15mer peptide library. We identified a group of novel peptides that specifically inhibited the proliferation and survival of breast cancer cells without affecting normal primary mammary epithelial cells or fibroblasts. The intrinsic apoptotic pathway is activated by these peptides in the face of abnormal expression of numerous cell cycle regulatory genes. Associated alterations in histone marks, nuclear structure, and levels of critical RNA binding proteins vary in a peptide specific manner. This study demonstrates a novel method for the discovery of new potential therapeutic peptides.
Assuntos
Neoplasias da Mama , Biblioteca de Peptídeos , Humanos , Feminino , Proliferação de Células , Peptídeos/química , Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismoRESUMO
Purpose: Familial exudative vitreoretinopathy (FEVR) and Norrie disease are examples of genetic disorders in which the retinal vasculature fails to fully form (hypovascular), leading to congenital blindness. While studying the role of a factor expressed during retinal development, T-box factor Tbx3, we discovered that optic cup loss of Tbx3 caused the retina to become hypovascular. The purpose of this study was to characterize how loss of Tbx3 affects retinal vasculature formation. Methods: Conditional removal of Tbx3 from both retinal progenitors and astrocytes was done using the optic cup-Cre recombinase driver BAC-Dkk3-Cre and was analyzed using standard immunohistochemical techniques. Results: With Tbx3 loss, the retinas were hypovascular, as seen in patients with retinopathy of prematurity (ROP) and FEVR. Retinal vasculature failed to form the stereotypic tri-layered plexus in the dorsal-temporal region. Astrocyte precursors were reduced in number and failed to form a lattice at the dorsal-temporal edge. We next examined retinal ganglion cells, as they have been shown to play a critical role in retinal angiogenesis. We found that melanopsin expression and Islet1/2-positive retinal ganglion cells were reduced in the dorsal half of the retina. In previous studies, the loss of melanopsin has been linked to hyaloid vessel persistence, which we also observed in the Tbx3 conditional knockout (cKO) retinas, as well as in infants with ROP or FEVR. Conclusions: To the best of our knowledge, these studies are the first demonstration that Tbx3 is required for normal mammalian eye formation. Together, the results provide a potential genetic model for retinal hypovascular diseases.
Assuntos
Degeneração Retiniana , Retinopatia da Prematuridade , Camundongos , Animais , Recém-Nascido , Humanos , Retina , Células Ganglionares da Retina , Vasos Retinianos , Vitreorretinopatias Exsudativas Familiares , Mamíferos , Proteínas com Domínio TRESUMO
hnRNPK is a multifunctional protein that plays an important role in cancer cell proliferation and metastasis via its RNA- and DNA-binding properties. Previously we showed that cell-penetrating peptides derived from the RGG RNA-binding domain of SAFA (hnRNPU) disrupt cancer cell proliferation and survival. Here we explore the efficacy of a peptide derived from the RGG domain of hnRNPK. This peptide acts in a dominant-negative manner on several hnRNPK functions to induce death of multiple types of cancer cells. The peptide phenocopies the effect of hnRNPK knockdown on its mRNA-stability targets such as KLF4 and EGR1 and alters the levels and locations of long non-coding RNAs (lncRNAs) and proteins required for nuclear and paraspeckle formation and function. The RGG-derived peptide also decreases euchromatin as evidenced by loss of active marks and polymerase II occupancy. Our findings reveal the potential therapeutic utility of the hnRNPK RGG-derived peptide in a range of cancers.
RESUMO
RBM39 is a known splicing factor and coactivator. Here, we report that RBM39 functions as a master transcriptional regulator that interacts with the MLL1 complex to facilitate chromatin binding and H3K4 trimethylation in breast cancer cells. We identify RBM39 functional domains required for DNA and complex binding and show that the loss of RBM39 has widespread effects on H3K4me3 and gene expression, including key oncogenic pathways. RBM39's RNA recognition motif 3 (RRM3) functions as a dominant-negative domain; namely, it disrupts the complex and H3K4me trimethylation and expression of RBM/MLL1 target genes. RRM3-derived cell-penetrating peptides phenocopy the effects of the loss of RBM39 to decrease growth and survival of all major subtypes of breast cancer and yet are nontoxic to normal cells. These findings establish RBM39/MLL1 as a major contributor to the abnormal epigenetic landscape in breast cancer and lay the foundation for peptide-mediated cancer-specific therapy based on disruption of RBM39 epigenomic functions.
Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Epigenômica , Histona-Lisina N-Metiltransferase/genética , Proteína de Leucina Linfoide-Mieloide/genética , Peptídeos/metabolismo , Proteínas de Ligação a RNA/genética , Transcrição Gênica , Animais , Carcinogênese/patologia , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células/genética , Sobrevivência Celular , Peptídeos Penetradores de Células/metabolismo , Feminino , Células HEK293 , Código das Histonas , Histona-Lisina N-Metiltransferase/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteína de Leucina Linfoide-Mieloide/metabolismo , Fenótipo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Domínios Proteicos , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismoRESUMO
Scaffold-attachment-factor A (SAFA) has important roles in many normal and pathologic cellular processes but the scope of its function in cancer cells is unknown. Here, we report dominant-negative activity of novel peptides derived from the SAP and RGG-domains of SAFA and their effects on proliferation, survival and the epigenetic landscape in a range of cancer cell types. The RGG-derived peptide dysregulates SAFA binding and regulation of alternatively spliced targets and decreases levels of key spliceosome proteins in a cell-type specific manner. In contrast, the SAP-derived peptide reduces active histone marks, promotes chromatin compaction, and activates the DNA damage response and cell death in a subset of cancer cell types. Our findings reveal an unprecedented function of SAFA-derived peptides in regulating diverse SAFA molecular functions as a tumor suppressive mechanism and demonstrate the potential therapeutic utility of SAFA-peptides in a wide range of cancer cells.
RESUMO
The mechanisms used by embryos to pattern tissues across their axes has fascinated developmental biologists since the founding of embryology. Here, using single-cell technology, we interrogate complex patterning defects and define a Hedgehog (Hh)-fibroblast growth factor (FGF) signaling axis required for anterior mesoderm lineage development during gastrulation. Single-cell transcriptome analysis of Hh-deficient mesoderm revealed selective deficits in anterior mesoderm populations, culminating in defects to anterior embryonic structures, including the pharyngeal arches, heart, and anterior somites. Transcriptional profiling of Hh-deficient mesoderm during gastrulation revealed disruptions to both transcriptional patterning of the mesoderm and FGF signaling for mesoderm migration. Mesoderm-specific Fgf4/Fgf8 double-mutants recapitulated anterior mesoderm defects and Hh-dependent GLI transcription factors modulated enhancers at FGF gene loci. Cellular migration defects during gastrulation induced by Hh pathway antagonism were mitigated by the addition of FGF4 protein. These findings implicate a multicomponent signaling hierarchy activated by Hh ligands from the embryonic node and executed by FGF signals in nascent mesoderm to control anterior mesoderm patterning.
Assuntos
Fator 4 de Crescimento de Fibroblastos/genética , Fator 8 de Crescimento de Fibroblasto/genética , Gastrulação/genética , Proteína GLI1 em Dedos de Zinco/genética , Animais , Padronização Corporal/genética , Linhagem da Célula/genética , Embrião de Galinha , Fatores de Crescimento de Fibroblastos/genética , Gástrula/crescimento & desenvolvimento , Gástrula/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas Hedgehog/genética , Mesoderma/crescimento & desenvolvimento , Mesoderma/metabolismo , Camundongos , Transdução de Sinais/genética , Análise de Célula Única , Transcriptoma/genéticaRESUMO
Transcription factors that coordinate migration, differentiation or proliferation of enteric nervous system (ENS) precursors are not well defined. To identify novel transcriptional regulators of ENS development, we performed microarray analysis at embryonic day (E) 17.5 and identified many genes that were enriched in the ENS compared to other bowel cells. We decided to investigate the T-box transcription factor Tbx3, which is prominently expressed in developing and mature ENS. Haploinsufficiency for TBX3 causes ulnar-mammary syndrome (UMS) in humans, a multi-organ system disorder. TBX3 also regulates several genes known to be important for ENS development. To test the hypothesis that Tbx3 is important for ENS development or function, we inactivated Tbx3 in all neural crest derivatives, including ENS progenitors using Wnt1-Cre and a floxed Tbx3 allele. Tbx3 fl/fl; Wnt1-Cre conditional mutant mice die shortly after birth with cleft palate and difficulty feeding. The ENS of mutants was well-organized with a normal density of enteric neurons and nerve fiber bundles, but small bowel glial cell density was reduced. Despite this, bowel motility appeared normal. Furthermore, although Tbx3 is expressed in cardiac neural crest, Tbx3 fl/fl; Wnt1-Cre mice had structurally normal hearts. Thus, loss of Tbx3 within neural crest has selective effects on Tbx3-expressing neural crest derivatives.
Assuntos
Sistema Nervoso Entérico/embriologia , Crista Neural/embriologia , Proteínas com Domínio T/fisiologia , Animais , Diferenciação Celular , Movimento Celular , Fissura Palatina/embriologia , Fissura Palatina/genética , Coração/embriologia , Intestinos/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Crista Neural/metabolismo , Crista Neural/fisiologia , Neurogênese , Neuroglia/fisiologia , Neurônios , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/genética , Proteína Wnt1RESUMO
Crucial roles for T-box3 in development are evident by severe limb malformations and other birth defects caused by T-box3 mutations in humans. Mechanisms whereby T-box3 regulates limb development are poorly understood. We discovered requirements for T-box at multiple stages of mouse limb development and distinct molecular functions in different tissue compartments. Early loss of T-box3 disrupts limb initiation, causing limb defects that phenocopy Sonic Hedgehog (Shh) mutants. Later ablation of T-box3 in posterior limb mesenchyme causes digit loss. In contrast, loss of anterior T-box3 results in preaxial polydactyly, as seen with dysfunction of primary cilia or Gli3-repressor. Remarkably, T-box3 is present in primary cilia where it colocalizes with Gli3. T-box3 interacts with Kif7 and is required for normal stoichiometry and function of a Kif7/Sufu complex that regulates Gli3 stability and processing. Thus, T-box3 controls digit number upstream of Shh-dependent (posterior mesenchyme) and Shh-independent, cilium-based (anterior mesenchyme) Hedgehog pathway function.
Assuntos
Membro Anterior/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Membro Posterior/embriologia , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas com Domínio T/metabolismo , Animais , Membro Anterior/anormalidades , Membro Posterior/anormalidades , Cinesinas/metabolismo , Camundongos , Mapeamento de Interação de Proteínas , Proteínas com Domínio T/genética , Proteína Gli3 com Dedos de ZincoRESUMO
Cellular senescence is a crucial tumor suppressor mechanism. We discovered a CAPERα/TBX3 repressor complex required to prevent senescence in primary cells and mouse embryos. Critical, previously unknown roles for CAPERα in controlling cell proliferation are manifest in an obligatory interaction with TBX3 to regulate chromatin structure and repress transcription of CDKN2A-p16INK and the RB pathway. The IncRNA UCA1 is a direct target of CAPERα/TBX3 repression whose overexpression is sufficient to induce senescence. In proliferating cells, we found that hnRNPA1 binds and destabilizes CDKN2A-p16INK mRNA whereas during senescence, UCA1 sequesters hnRNPA1 and thus stabilizes CDKN2A-p16INK. Thus CAPERα/TBX3 and UCA1 constitute a coordinated, reinforcing mechanism to regulate both CDKN2A-p16INK transcription and mRNA stability. Dissociation of the CAPERα/TBX3 co-repressor during oncogenic stress activates UCA1, revealing a novel mechanism for oncogene-induced senescence. Our elucidation of CAPERα and UCA1 functions in vivo provides new insights into senescence induction, and the oncogenic and developmental properties of TBX3.
Assuntos
Senescência Celular , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Proteínas Nucleares/metabolismo , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas com Domínio T/metabolismo , Animais , Proliferação de Células , Cromatina/química , Fibroblastos/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1 , Humanos , Espectrometria de Massas , Camundongos , Oncogenes , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismoRESUMO
TBX3 is a member of the T-box family of transcription factors with critical roles in development, oncogenesis, cell fate, and tissue homeostasis. TBX3 mutations in humans cause complex congenital malformations and Ulnar-mammary syndrome. Previous investigations into TBX3 function focused on its activity as a transcriptional repressor. We used an unbiased proteomic approach to identify TBX3 interacting proteins in vivo and discovered that TBX3 interacts with multiple mRNA splicing factors and RNA metabolic proteins. We discovered that TBX3 regulates alternative splicing in vivo and can promote or inhibit splicing depending on context and transcript. TBX3 associates with alternatively spliced mRNAs and binds RNA directly. TBX3 binds RNAs containing TBX binding motifs, and these motifs are required for regulation of splicing. Our study reveals that TBX3 mutations seen in humans with UMS disrupt its splicing regulatory function. The pleiotropic effects of TBX3 mutations in humans and mice likely result from disrupting at least two molecular functions of this protein: transcriptional regulation and pre-mRNA splicing.
Assuntos
Anormalidades Múltiplas/genética , Processamento Alternativo/genética , Doenças Mamárias/genética , Mapas de Interação de Proteínas/genética , Proteínas com Domínio T/genética , Ulna/anormalidades , Anormalidades Múltiplas/patologia , Animais , Doenças Mamárias/patologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Mutação , Malformações do Sistema Nervoso , Proteômica/métodos , Precursores de RNA/genética , RNA Mensageiro/genética , Proteínas com Domínio T/biossíntese , Ulna/patologiaRESUMO
Although several syndromes include abnormalities of both the ventral body wall and external genitalia, the developmental bases of this correlation are largely unknown. Naturally occurring mutations in Aristaless-like 4 (Alx4, Strong's luxoid: Alx4Lst) have ventral body wall and pelvic girdle abnormalities. We sought to determine whether the development of the genital tubercle (GT) and its derivatives, the external genitalia, is affected by this mutation. We thus performed genetic and tissue labeling analyses in mutant mice. Alx4Lst/Lst mutants displayed hypoplasia of the dorsal GT and reduced expression of Fibronectin. We analyzed cell migration during GT formation by tissue labeling experiments and discovered that the cells located in the proximal segment of the umbilical cord (infra-umbilical mesenchyme) migrate toward the dorsal part of the GT. The Alx4Lst/Lst mutants also displayed augmented expression of Hh signal-related genes. Hence, we analyzed a series of combinatorial mutants for Alx4, Sonic hedgehog (Shh) and GLI-Kruppel family member 3 (Gli3). These phenotype-genotype analyses suggested a genetic interaction between Alx4 and Hh signaling during GT formation. Moreover, Hh gain-of-function mutants phenocopied some of these phenotypes. These observations reveal novel information regarding the pathogenic mechanisms of syndromic lower ventral body malformations, which are largely unknown.
Assuntos
Genitália/anormalidades , Proteínas de Homeodomínio/genética , Mutação , Pelve/anormalidades , Animais , Movimento Celular , Feminino , Genitália/embriologia , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Pelve/embriologia , Cordão Umbilical/embriologia , Cordão Umbilical/patologia , Proteína Gli3 com Dedos de ZincoRESUMO
TBX3 is critical for human development: mutations in TBX3 cause congenital anomalies in patients with ulnar-mammary syndrome. Data from mice and humans suggest multiple roles for Tbx3 in development and function of the cardiac conduction system. The mechanisms underlying the functional development, maturation, and maintenance of the conduction system are not well understood. We tested the requirements for Tbx3 in these processes. We generated a unique series of Tbx3 hypomorphic and conditional mouse mutants with varying levels and locations of Tbx3 activity within the heart, and developed techniques for evaluating in vivo embryonic conduction system function. Disruption of Tbx3 function in different regions of the developing heart causes discrete phenotypes and lethal arrhythmias: sinus pauses and bradycardia indicate sinoatrial node dysfunction, whereas preexcitation and atrioventricular block reveal abnormalities in the atrioventricular junction. Surviving Tbx3 mutants are at increased risk for sudden death. Arrhythmias induced by knockdown of Tbx3 in adults reveal its requirement for conduction system homeostasis. Arrhythmias in Tbx3-deficient embryos are accompanied by disrupted expression of multiple ion channels despite preserved expression of previously described conduction system markers. These findings indicate that Tbx3 is required for the conduction system to establish and maintain its correct molecular identity and functional properties. In conclusion, Tbx3 is required for the functional development, maturation, and homeostasis of the conduction system in a highly dosage-sensitive manner. TBX3 and its regulatory targets merit investigation as candidates for human arrhythmias.
Assuntos
Arritmias Cardíacas/fisiopatologia , Dosagem de Genes , Sistema de Condução Cardíaco/fisiopatologia , Homeostase/genética , Proteínas com Domínio T/deficiência , Proteínas com Domínio T/genética , Alelos , Animais , Animais Recém-Nascidos , Arritmias Cardíacas/complicações , Arritmias Cardíacas/diagnóstico por imagem , Arritmias Cardíacas/patologia , Bloqueio Atrioventricular/complicações , Bloqueio Atrioventricular/diagnóstico por imagem , Bloqueio Atrioventricular/patologia , Bloqueio Atrioventricular/fisiopatologia , Nó Atrioventricular/patologia , Nó Atrioventricular/fisiopatologia , Conexina 43/metabolismo , Eletrocardiografia , Embrião de Mamíferos/anormalidades , Embrião de Mamíferos/patologia , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Sistema de Condução Cardíaco/anormalidades , Sistema de Condução Cardíaco/diagnóstico por imagem , Sistema de Condução Cardíaco/patologia , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Camundongos , Mutação/genética , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Recombinação Genética/genética , Análise de Sobrevida , Proteínas com Domínio T/metabolismo , UltrassonografiaRESUMO
Heart development requires contributions from, and coordinated signaling interactions between, several cell populations, including splanchnic and pharyngeal mesoderm, postotic neural crest and the proepicardium. Here we report that Fgf3 and Fgf10, which are expressed dynamically in and near these cardiovascular progenitors, have redundant and dosage sensitive requirements in multiple aspects of early murine cardiovascular development. Embryos with Fgf3(-/+);Fgf10(-/-), Fgf3(-/-);Fgf10(-/+) and Fgf3(-/-);Fgf10(-/-) genotypes formed an allelic series of increasing severity with respect to embryonic survival, with double mutants dead by E11.5. Morphologic analysis of embryos with three mutant alleles at E11.5-E13.5 and double mutants at E9.5-E11.0 revealed multiple cardiovascular defects affecting the outflow tract, ventricular septum, atrioventricular cushions, ventricular myocardium, dorsal mesenchymal protrusion, pulmonary arteries, epicardium and fourth pharyngeal arch artery. Assessment of molecular markers in E8.0-E10.5 double mutants revealed abnormalities in each progenitor population, and suggests that Fgf3 and Fgf10 are not required for specification of cardiovascular progenitors, but rather for their normal developmental coordination. These results imply that coding or regulatory mutations in FGF3 or FGF10 could contribute to human congenital heart defects.
Assuntos
Vasos Coronários/fisiologia , Fator 10 de Crescimento de Fibroblastos/fisiologia , Fator 3 de Crescimento de Fibroblastos/fisiologia , Coração/embriologia , Neovascularização Fisiológica , Animais , Feminino , Fator 8 de Crescimento de Fibroblasto/genética , Camundongos , Crista Neural/anormalidades , Gravidez , Proteínas com Domínio T/genéticaRESUMO
Systemic loss-of-function studies have demonstrated that Pax3 transcription factor expression is essential for dorsal neural tube, early neural crest and muscle cell lineage morphogenesis. Cardiac neural crest cells participate in both remodeling of the pharyngeal arch arteries and outflow tract septation during heart development, but the lineage specific role of Pax3 in neural crest function has not yet been determined. To gain insight into the requirement of Pax3 within the neural crest, we conditionally deleted Pax3 in both the premigratory and migratory neural crest populations via Wnt1-Cre and Ap2α-Cre and via P0-Cre in only the migratory neural crest, and compared these phenotypes to the pulmonary atresia phenotype observed following the systemic loss of Pax3. Surprisingly, using Wnt1-Cre deletion there are no resultant heart defects despite the loss of Pax3 from the premigratory and migratory neural crest. In contrast, earlier premigratory and migratory Ap2α-Cre mediated deletion resulted in double outlet right ventricle alignment heart defects. In order to assess the tissue-specific contribution of neural crest to heart development, genetic ablation of neural crest lineage using a Wnt1-Cre-activated diphtheria toxin fragment-A cell-killing system was employed. Significantly, ablation of Wnt1-Cre-expressing neural crest cells resulted in fully penetrant persistent truncus arteriosus malformations. Combined, the data show that Pax3 is essential for early neural crest progenitor formation, but is not required for subsequent cardiac neural crest progeny morphogenesis involving their migration to the heart or septation of the outflow tract.
Assuntos
Coração/embriologia , Morfogênese , Miocárdio/metabolismo , Crista Neural/embriologia , Fatores de Transcrição Box Pareados/fisiologia , Animais , Linhagem da Célula , Movimento Celular , Feminino , Integrases/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/citologia , Miócitos Cardíacos/citologia , Fator de Transcrição PAX3 , Proteína Wnt1/fisiologiaRESUMO
The fibroblast growth factor, FGF8, has been shown to be essential for vertebrate cardiovascular, craniofacial, brain and limb development. Here we report that Fgf8 function is required for normal progression through the late fetal stages of lung development that culminate in alveolar formation. Budding, lobation and branching morphogenesis are unaffected in early stage Fgf8 hypomorphic and conditional mutant lungs. Excess proliferation during fetal development disrupts distal airspace formation, mesenchymal and vascular remodeling, and Type I epithelial cell differentiation resulting in postnatal respiratory failure and death. Our findings reveal a previously unknown, critical role for Fgf8 function in fetal lung development and suggest that this factor may also contribute to postnatal alveologenesis. Given the high number of premature infants with alveolar dysgenesis and lung dysplasia, and the accumulating evidence that short-term benefits of available therapies may be outweighed by long-term detrimental effects on postnatal alveologenesis, the therapeutic implications of identifying a factor or pathway that can be targeted to stimulate normal alveolar development are profound.
Assuntos
Feto/embriologia , Feto/metabolismo , Fator 8 de Crescimento de Fibroblasto/metabolismo , Pulmão/embriologia , Pulmão/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Diferenciação Celular , Proliferação de Células , Embrião de Mamíferos/metabolismo , Epitélio/metabolismo , Epitélio/patologia , Fator 8 de Crescimento de Fibroblasto/deficiência , Fator 8 de Crescimento de Fibroblasto/genética , Regulação da Expressão Gênica no Desenvolvimento , Integrases/metabolismo , Pulmão/anormalidades , Pulmão/irrigação sanguínea , Mesoderma/metabolismo , Mesoderma/patologia , Camundongos , Mutação/genéticaRESUMO
Fibroblast growth factors (FGFs) are secreted molecules that activate the RAS/mitogen-activated protein kinase (MAPK) signaling pathway. In zebrafish development, FGF signaling is responsible for establishing dorsal polarity, maintaining the isthmic organizer, and cardiac ventricle formation. Because several ETS factors are known transcriptional mediators of MAPK signaling, we hypothesized that these factors function to mediate FGF signaling processes. In zebrafish, the simultaneous knock-down of three Pea3 ETS proteins, Etv5, Erm, and Pea3, produced phenotypes reminiscent of embryos deficient in FGF signaling. Morphant embryos displayed both cardiac and left/right patterning defects as well as disruption of the isthmic organizer. Furthermore, the expression of FGF target genes was abolished in Pea3 ETS depleted embryos. To understand how FGF signaling and ETS factors control gene expression, transcriptional regulation of dusp6 was studied in mouse and zebrafish. Conserved Pea3 ETS binding sites were identified within the Dusp6 promoter, and reporter assays showed that one of these sites is required for dusp6 induction by FGFs. We further demonstrated the interaction of Pea3 ETS factors with the Dusp6 promoter both in vitro and in vivo. These results revealed the requirement of ETS factors in transducing FGF signals in developmental processes.
Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas Proto-Oncogênicas c-ets/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra/metabolismo , Animais , Sítios de Ligação/genética , Diferenciação Celular/genética , Fatores de Crescimento de Fibroblastos/genética , Expressão Gênica , Regulação da Expressão Gênica , Camundongos , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Oncogenes , Proteínas Proto-Oncogênicas c-ets/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Peixe-Zebra/genéticaRESUMO
The thymus constitutes the primary lymphoid organ responsible for the generation of naive T cells. Its stromal compartment is largely composed of a scaffold of different subsets of epithelial cells that provide soluble and membrane-bound molecules essential for thymocyte maturation and selection. With senescence, a steady decline in the thymic output of T cells has been observed. Numeric and qualitative changes in the stromal compartment of the thymus resulting in reduced thymopoietic capacity have been suggested to account for this physiologic process. The precise cellular and molecular mechanisms underlying thymic senescence are, however, only incompletely understood. Here, we demonstrate that TGF-beta signaling in thymic epithelial cells exerts a direct influence on the cell's capacity to support thymopoiesis in the aged mouse as the physiologic process of thymic senescence is mitigated in mice deficient for the expression of TGF-beta RII on thymic epithelial cells. Moreover, TGF-beta signaling in these stromal cells transiently hinders the early phase of thymic reconstitution after myeloablative conditioning and hematopoietic stem cell transplantation. Hence, inhibition of TGF-beta signaling decelerates the process of age-related thymic involution and may hasten the reconstitution of regular thymopoiesis after hematopoietic stem cell transplantation.
Assuntos
Envelhecimento/fisiologia , Células Epiteliais/fisiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Regeneração , Timo/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Animais , Camundongos , Transdução de Sinais , Células Estromais , Timo/citologiaRESUMO
Deletions on chromosome 22q11.21 disrupt pharyngeal and cardiac development and cause DiGeorge and related human syndromes. CRKL (CRK-Like) lies within 22q11.21, and Crkl-/- mice have phenotypic features of 22q11 deletion (del22q11) syndromes. While human FGF8 does not localize to 22q11, deficiency of Fgf8 also generates many features of del22q11 syndrome in mice. Since Fgf8 signals via receptor-type tyrosine kinases, and Crk family adaptor proteins transduce intracellular signals downstream of tyrosine kinases, we investigated whether Crkl mediates Fgf8 signaling. In addition to discovering genetic interactions between Crkl and Fgf8 during morphogenesis of structures affected in del22q11 syndrome, we found that Fgf8 induces tyrosine phosphorylation of FgfRs 1 and 2 and their binding to Crkl. Crkl is required for normal cellular responses to Fgf8, including survival and migration, Erk activation, and target gene expression. These findings provide mechanistic insight into disrupted intercellular interactions in the pathogenesis of malformations seen in del22q11 syndrome.
Assuntos
Cromossomos Humanos Par 22 , Síndrome de DiGeorge/metabolismo , Fator 8 de Crescimento de Fibroblasto/metabolismo , Deleção de Genes , Proteínas Proto-Oncogênicas c-crk/deficiência , Transdução de Sinais/fisiologia , Animais , Apoptose , Western Blotting/métodos , Osso e Ossos/embriologia , Osso e Ossos/metabolismo , Sistema Cardiovascular/embriologia , Sistema Cardiovascular/metabolismo , Contagem de Células/métodos , Células Cultivadas , Fatores Quimiotáticos/metabolismo , Síndrome de DiGeorge/genética , Modelos Animais de Doenças , Embrião de Mamíferos , Ativação Enzimática , Imunofluorescência/métodos , Regulação da Expressão Gênica no Desenvolvimento/genética , Genótipo , Humanos , Camundongos , Camundongos Knockout , Modelos Biológicos , Crista Neural/metabolismo , Faringe/embriologia , Faringe/metabolismo , Fenótipo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de TempoRESUMO
Although numerous molecules required for limb bud formation have recently been identified, the molecular pathways that initiate this process and ensure that limb formation occurs at specific axial positions have yet to be fully elucidated. Based on experiments in the chick, Fgf8 expression in the intermediate mesoderm (IM) has been proposed to play a critical role in the initiation of limb bud outgrowth via restriction of Fgf10 expression to the appropriate region of the lateral plate mesoderm. Contrary to the outcome predicted by this model, ablation of Fgf8 expression in the intermediate mesoderm before limb bud initiation had no effect on initial limb bud outgrowth or on the formation of normal limbs. When their expression patterns were first elucidated, both Fgf4 and Fgf8 were proposed to mediate critical functions of the apical ectodermal ridge (AER), which is required for proper limb bud outgrowth. Although mice lacking Fgf4 in the AER have normal limbs, limb development is severely affected in Fgf8 mutants and certain skeletal elements are not produced. By creating mice lacking both Fgf4 and Fgf8 function in the forelimb AER, we show that limb bud mesenchyme fails to survive in the absence of both FGF family members. Thus, Fgf4 is responsible for the partial compensation of distal limb development in the absence of Fgf8. A prolonged period of increased apoptosis, beginning at 10 days of gestation in a proximal-dorsal region of the limb bud, leads to the elimination of enough mesenchymal cells to preclude formation of distal limb structures. Expression of Shh and Fgf10 is nearly abolished in double mutant limb buds. By using a CRE driver expressed in both forelimb and hindlimb ectoderm to inactivate Fgf4 and Fgf8, we have produced mice lacking all limbs, allowing a direct comparison of FGF requirements in the two locations.