Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 8(22)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37991023

RESUMO

BACKGROUNDKaposi sarcoma (KS) is among the most common childhood cancers in Eastern and Central Africa. Pediatric KS has a distinctive clinical presentation compared with adult KS, which includes a tendency for primary lymph node involvement, a considerable proportion of patients lacking cutaneous lesions, and a potential for fulminant disease. The molecular mechanisms or correlates for these disease features are unknown.METHODSThis was a cross-sectional study. All cases were confirmed by IHC for KS-associated herpesvirus (KSHV) LANA protein. Baseline blood samples were profiled for HIV and KSHV genome copy numbers by qPCR and secreted cytokines by ELISA. Biopsies were characterized for viral and human transcription, and KSHV genomes were determined when possible.RESULTSSeventy participants with pediatric KS were enrolled between June 2013 and August 2019 in Malawi and compared with adult patients with KS. They exhibited high KSHV genome copy numbers and IL-6/IL-10 levels. Four biopsies (16%) had a viral transcription pattern consistent with lytic viral replication.CONCLUSIONThe unique features of pediatric KS may contribute to the specific clinical manifestations and may direct future treatment options.FUNDINGUS National Institutes of Health U54-CA-254569, PO1-CA019014, U54-CA254564, RO1-CA23958.


Assuntos
Infecções por HIV , Herpesvirus Humano 8 , Sarcoma de Kaposi , Estados Unidos , Humanos , Criança , Adulto , Herpesvirus Humano 8/genética , Estudos Transversais , Replicação Viral , Infecções por HIV/tratamento farmacológico
2.
Int J Cancer ; 153(12): 2082-2092, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37602960

RESUMO

Kaposi sarcoma (KS) is the most common cancer in people living with HIV (PLWH) in many countries where KS-associated herpesvirus is endemic. Treatment has changed little in 20 years, but the disease presentation has. This prospective cohort study enrolled 122 human immunodeficiency virus (HIV) positive KS patients between 2017 and 2019 in Malawi. Participants were treated with bleomycin, vincristine and combination antiretroviral therapy, the local standard of care. One-year overall survival was 61%, and progression-free survival was 58%. The 48-week complete response rate was 35%. RNAseq (n = 78) differentiated two types of KS lesions, those with marked endothelial characteristics and those enriched in inflammatory transcripts. This suggests that different KS lesions are in different disease states consistent with the known heterogeneous clinical response to treatment. In contrast to earlier cohorts, the plasma HIV viral load of KS patients in our study was highly variable. A total of 25% of participants had no detectable HIV; all had detectable KSHV viral load. Our study affirms that many KS cases today develop in PLWH with well-controlled HIV infection and that different KS lesions have differing molecular compositions. Further studies are needed to develop predictive biomarkers for this disease.


Assuntos
Infecções por HIV , Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Sarcoma de Kaposi/complicações , Sarcoma de Kaposi/tratamento farmacológico , Sarcoma de Kaposi/epidemiologia , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , HIV , Estudos Prospectivos , Herpesvirus Humano 8/fisiologia
3.
Virology ; 568: 101-114, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35152042

RESUMO

Kaposi sarcoma (KS)-associated herpesvirus (KSHV/HHV-8) was first sequenced from the body cavity (BC) lymphoma cell line, BC-1, in 1996. Few other KSHV genomes have been reported. Our knowledge of sequence variation for this virus remains spotty. This study reports additional genomes from historical US patient samples and from African KS biopsies. It describes an assay that spans regions of the virus that cannot be covered by short read sequencing. These include the terminal repeats, the LANA repeats, and the origins of replication. A phylogenetic analysis, based on 107 genomes, identified three distinct clades; one containing isolates from USA/Europe/Japan collected in the 1990s and two of Sub-Saharan Africa isolates collected since 2010. This analysis indicates that the KSHV strains circulating today differ from the isolates collected at the height of the AIDS epidemic. This analysis helps experimental designs and potential vaccine studies.


Assuntos
Genoma Viral , Genômica , Genótipo , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/classificação , Herpesvirus Humano 8/genética , Sarcoma de Kaposi/virologia , Adulto , Linhagem Celular , Feminino , Regulação Viral da Expressão Gênica , Genômica/métodos , Infecções por Herpesviridae/diagnóstico , Herpesvirus Humano 8/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Filogenia , Recombinação Genética
4.
mBio ; 13(1): e0347321, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35089062

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV)-associated primary effusion lymphomas (PEL) are traditionally viewed as homogenous regarding viral transcription and lineage of origin, but so far this contention has not been explored at the single-cell level. Single-cell RNA sequencing of latently infected PEL supports the existence of multiple subpopulations even within a single cell line. At most 1% of the cells showed evidence of near-complete lytic transcription. The majority of cells only expressed the canonical viral latent transcripts: those originating from the latency locus, the viral interferon regulatory factor locus, and the viral lncRNA nut-1/Pan/T1.1; however, a significant fraction of cells showed various degrees of more permissive transcription, and some showed no evidence of KSHV transcripts whatsoever. Levels of viral interleukin-6 (IL-6)/K2 mRNA emerged as the most distinguishing feature to subset KSHV-infected PEL. One newly uncovered phenotype is the existence of BCBL-1 cells that readily adhered to fibronectin and that displayed mesenchymal lineage-like characteristics. IMPORTANCE Latency is the defining characteristic of the Herpesviridae and central to the tumorigenesis phenotype of Kaposi's sarcoma-associated herpesvirus (KSHV). KSHV-driven primary effusion lymphomas (PEL) rapidly develop resistance to therapy, suggesting tumor instability and plasticity. At any given time, a fraction of PEL cells spontaneously reactivate KSHV, suggesting transcriptional heterogeneity even within a clonal cell line under optimal growth conditions. This study employed single-cell mRNA sequencing to explore the within-population variability of KSHV transcription and how it relates to host cell transcription. Individual clonal PEL cells exhibited differing patterns of viral transcription. Most cells showed the canonical pattern of KSHV latency (LANA, vCyc, vFLIP, Kaposin, and vIRFs), but a significant fraction evidenced extended viral gene transcription, including of the viral IL-6 homolog, open reading frame K2. This study suggests new targets of intervention for PEL. It establishes a conceptual framework to design KSHV cure studies analogous to those for HIV.


Assuntos
Herpesviridae , Herpesvirus Humano 8 , Linfoma de Efusão Primária , Sarcoma de Kaposi , Humanos , Interleucina-6/metabolismo , Herpesvirus Humano 8/genética , Herpesviridae/genética , Herpesviridae/metabolismo , RNA Mensageiro/metabolismo , Latência Viral , Regulação Viral da Expressão Gênica , Proteínas Virais/metabolismo
5.
J Virol ; 94(10)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32161170

RESUMO

Kaposi sarcoma-associated herpesvirus (KSHV) is necessary but not sufficient for primary effusion lymphoma (PEL) development. Alterations in cellular signaling pathways are also a characteristic of PEL. Other B cell lymphomas have acquired an oncogenic mutation in the myeloid differentiation primary response 88 (MYD88) gene. The MYD88 L265P mutant results in the activation of interleukin-1 receptor associated kinase (IRAK). To probe IRAK/MYD88 signaling in PEL, we employed CRISPR/Cas9 technology to generate stable deletion clones in BCBL-1Cas9 and BC-1Cas9 cells. To look for off-target effects, we determined the complete exome of the BCBL-1Cas9 and BC-1Cas9 cells. Deletion of either MYD88, IRAK4, or IRAK1 abolished interleukin-1 beta (IL-1ß) signaling; however, we were able to grow stable subclones from each population. Transcriptome sequencing (RNA-seq) analysis of IRAK4 knockout cell lines (IRAK4 KOs) showed that the IRAK pathway induced cellular signals constitutively, independent of IL-1ß stimulation, which was abrogated by deletion of IRAK4. Transient complementation with IRAK1 increased NF-κB activity in MYD88 KO, IRAK1 KO, and IRAK4 KO cells even in the absence of IL-1ß. IL-10, a hallmark of PEL, was dependent on the IRAK pathway, as IRAK4 KOs showed reduced IL-10 levels. We surmise that, unlike B cell receptor (BCR) signaling, MYD88/IRAK signaling is constitutively active in PEL, but that under cell culture conditions, PEL rapidly became independent of this pathway.IMPORTANCE One hundred percent of primary effusion lymphoma (PEL) cases are associated with Kaposi sarcoma-associated herpesvirus (KSHV). PEL cell lines, such as BCBL-1, are the workhorse for understanding this human oncovirus and the host pathways that KSHV dysregulates. Understanding their function is important for developing new therapies as well as identifying high-risk patient groups. The myeloid differentiation primary response 88 (MYD88)/interleukin-1 receptor associated kinase (IRAK) pathway, which has progrowth functions in other B cell lymphomas, has not been fully explored in PEL. By performing CRISPR/Cas9 knockout (KO) studies targeting the IRAK pathway in PEL, we were able to determine that established PEL cell lines can circumvent the loss of IRAK1, IRAK4, and MYD88; however, the deletion clones are deficient in interleukin-10 (IL-10) production. Since IL-10 suppresses T cell function, this suggests that the IRAK pathway may serve a function in vivo and during early-stage development of PEL.


Assuntos
Herpesvirus Humano 8/genética , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Linfoma de Efusão Primária/metabolismo , Linfoma de Efusão Primária/virologia , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais/genética , Linfócitos B , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Herpesvirus Humano 8/fisiologia , Humanos , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo , Análise de Sequência , Transcriptoma
6.
Prostate Cancer ; 2016: 5653862, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27891254

RESUMO

Prostate cancer (PCa) is the most prevalent urological cancer that affects aging men in South Africa, and mechanisms underlying prostate tumorigenesis remain elusive. Research advancements in the field of PCa and epigenetics have allowed for the identification of specific alterations that occur beyond genetics but are still critically important in the pathogenesis of tumorigenesis. Anomalous epigenetic changes associated with PCa include histone modifications, DNA methylation, and noncoding miRNA. These mechanisms regulate and silence hundreds of target genes including some which are key components of cellular signalling pathways that, when perturbed, promote tumorigenesis. Elucidation of mechanisms underlying epigenetic alterations and the manner in which these mechanisms interact in regulating gene transcription in PCa are an unmet necessity that may lead to novel chemotherapeutic approaches. This will, therefore, aid in developing combination therapies that will target multiple epigenetic pathways, which can be used in conjunction with the current conventional PCa treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA