RESUMO
Cellular stress, notably oxidative, inflammatory, and endoplasmic reticulum (ER) stress, is implicated in the pathogenesis of cardiovascular disease. Modifiable risk factors for cardiovascular disease such as diabetes, hypercholesterolemia, saturated fat consumption, hypertension, and cigarette smoking cause ER stress whereas currently known cardioprotective drugs with diverse pharmacodynamics share a common pleiotropic effect of reducing ER stress. Selective targeting of oxidative stress with known antioxidative vitamins has been ineffective in reducing cardiovascular risk. This "antioxidant paradox" is partially attributed to the unexpected aggravation of ER stress by the antioxidative agents used. In contrast, some of the contemporary antihyperglycemic drugs inhibit both oxidative stress and ER stress in human coronary artery endothelial cells. Unlike sulfonylureas, meglitinides, α glucosidase inhibitors, and thiazolidinediones, metformin, glucagon-like peptide 1 receptor agonists, and sodium-glucose cotransporter 2 inhibitors are the only antihyperglycemic drugs that reduce ER stress caused by pharmacological agents (tunicamycin) or hyperglycemic conditions. Clinical trials with selective ER stress modifiers are needed to test the suitability of ER stress as a therapeutic target for cardiovascular disease.
Assuntos
Doenças Cardiovasculares , Hipoglicemiantes , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Células Endoteliais , Estresse do Retículo Endoplasmático , Antioxidantes/farmacologiaRESUMO
The cholesterol efflux protein ATP binding cassette protein A1 (ABCA) and apolipoprotein A1 (apo A1) are key constituents in the process of reverse-cholesterol transport (RCT), whereby excess cholesterol in the periphery is transported to the liver where it can be converted primarily to bile acids for either use in digestion or excreted. Due to their essential roles in RCT, numerous studies have been conducted in cells, mice, and humans to more thoroughly understand the pathways that regulate their expression and activity with the goal of developing therapeutics that enhance RCT to reduce the risk of cardiovascular disease. Many of the drugs and natural compounds examined target several transcription factors critical for ABCA1 expression in both macrophages and the liver. Likewise, several miRNAs target not only ABCA1 but also the same transcription factors that are critical for its high expression. However, after years of research and many preclinical and clinical trials, only a few leads have proven beneficial in this regard. In this review we discuss the various transcription factors that serve as drug targets for ABCA1 and provide an update on some important leads.
Assuntos
Transportadores de Cassetes de Ligação de ATP , Colesterol , Transportador 1 de Cassete de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina , Animais , Colesterol/metabolismo , Expressão Gênica , Humanos , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Redox proteomics plays an increasingly important role characterizing the cellular redox state and redox signaling networks. As these datasets grow larger and identify more redox regulated sites in proteins, they provide a systems-wide characterization of redox regulation across cellular organelles and regulatory networks. However, these large proteomic datasets require substantial data processing and analysis in order to fully interpret and comprehend the biological impact of oxidative posttranslational modifications. We therefore developed ProteoSushi, a software tool to biologically annotate and quantify redox proteomics and other modification-specific proteomics datasets. ProteoSushi can be applied to differentially alkylated samples to assay overall cysteine oxidation, chemically labeled samples such as those used to profile the cysteine sulfenome, or any oxidative posttranslational modification on any residue.Here we demonstrate how to use ProteoSushi to analyze a large, public cysteine redox proteomics dataset. ProteoSushi assigns each modified peptide to shared proteins and genes, sums or averages signal intensities for each modified site of interest, and annotates each modified site with the most up-to-date biological information available from UniProt. These biological annotations include known functional roles or modifications of the site, the protein domain(s) that the site resides in, the protein's subcellular location and function, and more.
Assuntos
Cisteína , Proteômica , Cisteína/química , Oxirredução , Processamento de Proteína Pós-Traducional , Proteoma/metabolismoRESUMO
Black seed extract stimulates apolipoprotein A-I (apo A-I) gene expression in hepatocytes and intestinal cells in part by elevating peroxisome proliferator-activated receptor α (PPARα) and retinoid X receptor α (RXRα) levels. To explore potential ramifications of these observations, we examined the effects of black seed extract on hepatocyte lipid content and expression of key transcriptional regulators of fatty acid ß-oxidation and lipogenesis in HepG2 cells. PPARα, peroxisome proliferator-activated receptor γ (PPARγ), RXRα, thyroid hormone receptor ß (TRß), sterol-responsive element binding protein 1 (SREBP1), and sterol-responsive element binding protein 2 (SREBP2) levels were measured in black seed extract treated liver-derived HepG2 cells. Black seed extract treatment increased PPARα and RXRα expression and decreased intracellular neutral lipid content. Black seed extract treatment increased TRß expression and activity, and PPARα activity. In contrast, PPARγ, SREBP1 and SREBP2 levels were decreased in black seed extract treated cells. Black seed extract treatment also increased acyl-CoA synthetase long chain family member 5 (ACSL5), peroxisomal acyl-CoA oxidase 1 (ACOX1), and carnitine palmitoyl transferase 1A (CPT-1A) expression, three PPARα-dependent rate-limiting genes that facilitate fatty acid oxidation, similar to fenofibrate. PPARα knockdown reversed the effects of fenofibrate and blackseed on ACSL5, ACOX1, and CPT-1A expression. In conclusion, black seed extract-mediated lipid lowering in HepG2 cells is associated with increased expression of fatty acid oxidation enzymes and PPARα and reduced lipogenic signaling. Thus black seed extract may be potentially beneficial in metabolic diseases such as diabetes, cardiovascular disease, and metabolic syndrome.
Assuntos
Fenofibrato , Nigella sativa , Ácidos Graxos/metabolismo , Fenofibrato/farmacologia , Células Hep G2 , Humanos , Metabolismo dos Lipídeos , Lipídeos , Nigella sativa/metabolismo , PPAR alfa/metabolismo , PPAR gama/metabolismo , Extratos Vegetais/farmacologia , Sementes/metabolismo , EsteróisRESUMO
Several nutrients modulate the transcriptional activity of the apolipoprotein A-I (apo A-I) gene. To determine the influence of rare sugars on apo A-I expression in hepatic (HepG2) and intestinal derived (Caco-2) cell lines, apo A-I, albumin, and SP1 were quantified with enzyme immunoassay and Western blots while mRNA levels were quantified with real-time polymerase chain reaction. The promoter activity was measured using transient transfection assays with plasmids containing various segments and mutations in the promoter. D-allulose and D-tagatose, increased apo A-I concentration in culture media while D-sorbose and D-allose did not have any measurable effects. D-allulose did not increase apo A-I levels in Caco-2 cells. These changes paralleled the increased mRNA levels and promoter activity. D-allulose-response was mapped at the insulin response core element (IRCE). Mutation of the IRCE decreased the ability of D-allulose and insulin to activate the promoter. Treatment of HepG2 cells, but not Caco-2 cells, with D-alluose and insulin increased SP1 expression relative to control cells. D-allulose augmented the expression and IRCE binding of SP1, an essential transcription factor for the insulin on apo A-I promoter activity. D-allulose can modulate some insulin-responsive genes and may have anti-atherogenic properties, in part due to increasing apo A-I production. PRACTICAL APPLICATIONS: Coronary artery disease (CAD) is the number one cause of mortality in industrialized countries. A risk factor associated with CAD is low high-density lipoprotein (HDL) cholesterol and apolipoprotein A-I (apo A-I) concentrations in plasma. Thus, novel therapeutic agents or nutrients that upregulate apo A-I production should be identified. D-allulose and D-tagatose are used as sweeteners and may have favorable effects on insulin resistance and diabetes. This study shows that D-allulose and D-tagatose increases apo A-I production through increased transcription factor SP1-binding to insulin response element of the promoter. These sweeteners modulate some insulin responsive genes, increase the production of apo-A-I, and therefore may have anti-atherogenic properties.
Assuntos
Apolipoproteína A-I , Frutose/farmacologia , Insulina , Apolipoproteína A-I/genética , Células CACO-2 , Células Hep G2 , Hexoses , HumanosRESUMO
The increasing incidence of type 2 diabetes in the general population as well as enhanced life expectancy has resulted in a rapid rise in the prevalence of diabetes in the older population. Diabetes causes significant morbidity and impairs quality of life. Managing diabetes in older adults is a daunting task due to unique health and psychosocial challenges. Medical management is complicated by polypharmacy, cognitive impairment, urinary incontinence, injurious falls, and persistent pain. Health care providers now have several traditional and contemporary pharmacologic agents to manage diabetes. Avoidance of hypoglycemia is critical; however, evidence-based guidelines are lacking due to the paucity of clinical trials in older adults. For many in this population, maintaining independence is more important than adherence to published guidelines to prevent diabetes complications. The goal of diabetes care in older adults is to enhance the quality of life without subjecting these patients to intrusive and complicated interventions. Recent technological advancements such as continuous glucose monitoring systems can have crucial supplementary benefits in the geriatric population.
Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Idoso , Glicemia , Automonitorização da Glicemia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Hiperglicemia/complicações , Hiperglicemia/tratamento farmacológico , Qualidade de VidaRESUMO
Large-scale proteomic profiling of protein post-translational modifications has provided important insights into the regulation of cell signaling and disease. These modification-specific proteomics workflows nearly universally enrich modified peptides prior to mass spectrometry analysis, but protein-centric proteomic software tools have many limitations evaluating and interpreting these peptide-centric data sets. We, therefore, developed ProteoSushi, a software tool tailored to analysis of each modified site in peptide-centric proteomic data sets that is compatible with any post-translational modification or chemical label. ProteoSushi uses a unique approach to assign identified peptides to shared proteins and genes, minimizing redundancy by prioritizing shared assignments based on UniProt annotation score and optional user-supplied protein/gene lists. ProteoSushi simplifies quantitation by summing or averaging intensities for each modified site, merging overlapping peptide charge states, missed cleavages, spectral matches, and variable modifications into a single value. ProteoSushi also annotates each PTM site with the most up-to-date biological information available from UniProt, such as functional roles or known modifications, the protein domain in which the site resides, the protein's subcellular location and function, and more. ProteoSushi has a graphical user interface for ease of use. ProteoSushi's flexibility and combination of analysis features streamlines peptide-centric data processing and knowledge mining of large modification-specific proteomics data sets.
Assuntos
Proteômica , Software , Humanos , Espectrometria de Massas , Peptídeos , Processamento de Proteína Pós-TraducionalRESUMO
Cigarette smoking is one of the major causes of coronary artery disease (CAD) as is diabetes. However, nicotine has been generally regarded as safe and is used in smoking cessation programs. This presumption of nicotine safety was examined in human coronary artery endothelial cells (HCAEC). Endoplasmic reticulum (ER) stress was measured using the secreted alkaline phosphatase (SAP) assay. The ER stress markers inositol-requiring enzyme 1α (IRE1α), phospho-IRE1α, double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK), phospho-PERK, activating transcription factor 6 (ATF6), and glucose-related protein 78 (GRP78) were measured by western blot. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and crystal violet staining. Intact and cleaved caspase 3, BH3 interacting-domain death agonist (BID), and B-cell lymphoma 2 (Bcl2) were measured by western blot. In cells transfected with the SAP expression plasmid, treatment with nicotine resulted in a dose-dependent decrease in SAP expression with no noticeable toxicity. Nicotine (10 nM) also increased IRE1α and PERK phosphorylation, and ATF6 and GRP78 expression. Although nicotine at concentrations up to 10 µM did not cause cell death, treatment of HCAEC with 10 nM nicotine in the presence of 13.8 mM dextrose aggravated ER stress, increased cell death, increased cleaved caspase 3 and BID, and decreased BCL2. Nicotine at concentrations commonly achieved in nicotine-replacement therapy (NRT) significantly increased ER stress in HCAEC and aggravated dextrose-induced ER stress and cell apoptosis. People using electronic cigarettes and on NRT may be at increased risk for CAD.
RESUMO
Aberrant expression of nuclear transporters and deregulated subcellular localization of their cargo proteins are emerging as drivers and therapeutic targets of cancer. Here, we present evidence that the nuclear exporter exportin-6 and its cargo profilin-1 constitute a functionally important and frequently deregulated axis in cancer. Exportin-6 upregulation occurs in numerous cancer types and is associated with poor patient survival. Reducing exportin-6 level in breast cancer cells triggers antitumor effects by accumulating nuclear profilin-1. Mechanistically, nuclear profilin-1 interacts with eleven-nineteen-leukemia protein (ENL) within the super elongation complex (SEC) and inhibits the ability of the SEC to drive transcription of numerous pro-cancer genes including MYC. XPO6 and MYC are positively correlated across diverse cancer types including breast cancer. Therapeutically, exportin-6 loss sensitizes breast cancer cells to the bromodomain and extra-terminal (BET) inhibitor JQ1. Thus, exportin-6 upregulation is a previously unrecognized cancer driver event by spatially inhibiting nuclear profilin-1 as a tumor suppressor.
Assuntos
Carioferinas/metabolismo , Neoplasias/metabolismo , Profilinas/antagonistas & inibidores , Profilinas/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Humanos , Carioferinas/genética , Células MCF-7 , Camundongos , Camundongos Nus , Neoplasias/genética , Profilinas/genética , Análise de Sobrevida , Regulação para CimaRESUMO
Several strategies have been proposed to improve referrals and communication between primary care providers (PCPs) and specialists. In this article, we describe the effectiveness of collaborative care plans (CCPs) in reducing utilization of specialist resources in a capitated health plan based in a safety net hospital. To operationalize individual care plans, a single clinic called the Total Care Clinic (TCC) was launched. Midlevel providers were assigned to subspecialties and trained in specific algorithms of care that they were responsible for. Midlevel providers in the TCC were invited to attend in-house education opportunities. These interventions resulted in an overall 33.6-percentage-point reduction in the referral rate over 7 years of observation. The largest decrease in referrals was observed in gastroenterology, which resulted mostly from colon cancer screening with fecal immunochemical tests in place of colonoscopies. No increase in emergency department (ED) visits or hospital admissions accompanied the decreased referrals to specialists. Combining CCPs with provider education and placing select specialists in proximity of the PCPs resulted in significant referral reductions to specialists without increases in ED visits or hospital admissions.
Assuntos
Comportamento Cooperativo , Planejamento de Assistência ao Paciente/organização & administração , Equipe de Assistência ao Paciente/organização & administração , Encaminhamento e Consulta/estatística & dados numéricos , Humanos , Visita a Consultório Médico/estatística & dados numéricos , Relações Médico-PacienteRESUMO
Endoplasmic reticulum (ER) stress as well as oxidative stress have been shown to play important roles in metabolic and cardiovascular disease, and drugs that counteract the effects of ER and oxidative stresses may be clinically useful. To identify novel compounds that ameliorate ER and oxidative stresses, we screened two drug libraries purchased from Evotec, San Francisco, CA; the NIH clinical collection 1 (446 compounds) and the NIH clinical collection 2 (281 compounds). Human coronary artery endothelial cells (HCAEC) were tested for ER and oxidative stress. ER stress was measured with an ER stress-sensitive secreted alkaline phosphatase (SAP) assay. The cells were transfected with the plasmid pSAP2.Control, expressing a heat-resistant form of SAP, and treated with the ER stress inducer tunicamycin in the presence or absence of each of the various compounds for 24-h, at which time SAP activity was measured. Compounds exhibiting significant increases in SAP activity (41 compounds out of a total of 727 tested; 5.6%) were then assayed for their ability to suppress superoxide (SO) anion generation in cells treated with 27.5 mM dextrose. SO generation was measured using the superoxide-reactive probe 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-A]pyrazin-3-one hydrochloride chemiluminescence. Of the 41 compounds identified as ER stress reducers, only 33 (80.5%) suppressed dextrose-induced SO anion generation. Interestingly, 51% of the compounds found to be dual-stress modifiers consisted of cardioprotective drugs, including statins, angiotensin receptor blockers, angiotensin-converting enzyme inhibitors as well as ß-blockers. Future studies to validate the clinical effectiveness of these agents remain to be performed in pre-clinical and clinical trials.
Assuntos
Antioxidantes/farmacologia , Vasos Coronários/citologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Estresse Oxidativo/efeitos dos fármacos , Antagonistas Adrenérgicos beta/farmacologia , Fosfatase Alcalina/metabolismo , Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Calcitriol/farmacologia , Fármacos Cardiovasculares/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/metabolismo , Estradiol/farmacologia , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Espironolactona/farmacologia , Superóxidos/metabolismoRESUMO
Stimulation of plasma membrane receptor tyrosine kinases (RTKs), such as the epidermal growth factor receptor (EGFR), locally increases the abundance of reactive oxygen species (ROS). These ROS then oxidize cysteine residues in proteins to potentiate downstream signaling. Spatial confinement of ROS is an important regulatory mechanism of redox signaling that enables the stimulation of different RTKs to oxidize distinct sets of downstream proteins. To uncover additional mechanisms that specify cysteines that are redox regulated by EGF stimulation, we performed time-resolved quantification of the EGF-dependent oxidation of 4200 cysteine sites in A431 cells. Fifty-one percent of cysteines were statistically significantly oxidized by EGF stimulation. Furthermore, EGF induced three distinct spatiotemporal patterns of cysteine oxidation in functionally organized protein networks, consistent with the spatial confinement model. Unexpectedly, protein crystal structure analysis and molecular dynamics simulations indicated widespread redox regulation of cryptic cysteine residues that are solvent exposed only upon changes in protein conformation. Phosphorylation and increased flux of nucleotide substrates served as two distinct modes by which EGF specified the cryptic cysteine residues that became solvent exposed and redox regulated. Because proteins that are structurally regulated by different RTKs or cellular perturbations are largely unique, these findings suggest that solvent exposure and redox regulation of cryptic cysteine residues contextually delineate redox signaling networks.
Assuntos
Cisteína/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cristalografia por Raios X , Cisteína/química , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/química , Humanos , Simulação de Dinâmica Molecular , Oxirredução/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de TempoRESUMO
Inflammatory and oxidative stress in endothelial cells are implicated in the pathogenesis of premature atherosclerosis in diabetes. To determine whether high-dextrose concentrations induce the expression of pro-inflammatory cytokines, human coronary artery endothelial cells (HCAEC) were exposed to either 5.5 or 27.5 mM dextrose for 24-hours and interleukin-1ß (IL-1ß), interleukin-2 (IL-2), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor α (TNF α) levels were measured by enzyme immunoassays. To determine the effect of antioxidants on inflammatory cytokine secretion, cells were also treated with α-tocopherol, ascorbic acid, and the glutathione peroxidase mimetic ebselen. Only the concentration of IL-1ß in culture media from cells exposed to 27.5 mM dextrose increased relative to cells maintained in 5.5 mM dextrose. Treatment with α-tocopherol (10, 100, and 1,000 µM) and ascorbic acid (15, 150, and 1,500 µM) at the same time that the dextrose was added reduced IL-1ß, IL-6, and IL-8 levels in culture media from cells maintained at 5.5 mM dextrose but had no effect on IL-1ß, IL-6, and IL-8 levels in cells exposed to 27.5 mM dextrose. However, ebselen treatment reduced IL-1ß, IL-6, and IL-8 levels in cells maintained in either 5.5 or 27.5 mM dextrose. IL-2 and TNF α concentrations in culture media were below the limit of detection under all experimental conditions studied suggesting that these cells may not synthesize detectable quantities of these cytokines. These results suggest that dextrose at certain concentrations may increase IL-1ß levels and that antioxidants have differential effects on suppressing the secretion of pro-inflammatory cytokines in HCAEC.
Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes , Vasos Coronários/efeitos dos fármacos , Citocinas/antagonistas & inibidores , Células Endoteliais , Interleucina-6/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Células Cultivadas , Vasos Coronários/citologia , Citocinas/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Interleucina-6/metabolismoRESUMO
Multipronged risk management in diabetes has contributed to the recent decline in cardiovascular mortality. Few antihyperglycemic drugs have been conclusively shown to have cardioprotective effects. These include metformin, liraglutide, semaglutide, dulaglutide, and sodium-glucose cotransporter-2 inhibitors. Statins are the cornerstone of treatment for people with established coronary artery disease (CAD) or at risk of CAD. In patients with persistent low-density lipoprotein cholesterol (LDL-C) levels > 70 mg/dL, the addition of ezetimibe or proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors is recommended. In general, angiotensin-converting enzyme inhibitors and angiotensin-receptor blockers should be included in the treatment regimen. The goal is to have blood pressure < 140/90 mmHg, whereas a lower goal of < 130/80 mmHg is recommended in patients with CAD or proteinuria (> 1 g/day). Aspirin antiplatelet therapy should be restricted for people with established CAD or those with multiple CAD risk factors. While antiobesity medications have a modest role in managing obesity, bariatric surgery in people with body mass index (BMI) ≥ 40 or ≥ 35 with comorbidities can substantially affect quality of life and may reduce cardiovascular risks. Prescribing therapeutic agents should take into consideration a variety of factors, including the patient's preferences and the drug's affordability, side effect profile, and proven cardiovascular benefit.
Assuntos
Doenças Cardiovasculares/etiologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/uso terapêutico , Medicina Baseada em Evidências/métodos , Humanos , Fatores de Risco , Gestão de RiscosRESUMO
BACKGROUND: Endothelial cell dysfunction in diabetes is involved in the pathogenesis and progression of premature atherosclerosis. High-dextrose has been shown to induce both oxidative stress and endoplasmic reticulum stress in cultured human coronary artery endothelial cells (HCAEC). STUDY QUESTION: To determine whether or not several classes of cardioprotective drugs inhibit proinflammatory cytokine expression by HCAEC. MEASURES AND OUTCOMES: To determine the effects of high dextrose on expression of proinflammatory cytokines by HCAEC, cells were treated with either 5.5 mM or 27.5 mM dextrose for 24 hours and interleukin-1ß (IL-1ß), interleukin-2 (IL-2), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor α were measured by enzyme immunoassay in the presence or absence of known cardioprotective drugs, including select ß-blockers, statins, and renin-angiotensin system inhibitors. RESULTS: IL-1ß levels increased significantly in cells treated with high dextrose; however, IL-6 and IL-8 levels did not change. Treatment of cells with carvedilol, atenolol, and propranolol decreased levels of all 3 cytokines in cells exposed to either 5.5 or 27.5 mM dextrose. Similar effects on IL-1ß, IL-6, and IL-8 levels were observed when cells were treated with simvastatin, pravastatin, and the renin-angiotensin system inhibitors spironolactone, captopril, lisinopril, candesartan, and losartan. No Il-2 or tumor necrosis factor α expression was observed in any of the experiments indicating that HCAEC do not express these cytokines. CONCLUSIONS: We conclude that each of the classes of drugs tested possess pleiotropic anti-inflammatory activities and are effective in both low- and high-dextrose-treated cells.
Assuntos
Anti-Inflamatórios/farmacologia , Cardiotônicos/farmacologia , Vasos Coronários/efeitos dos fármacos , Citocinas/metabolismo , Glucose/administração & dosagem , Linhagem Celular , Vasos Coronários/citologia , Vasos Coronários/metabolismo , Relação Dose-Resposta a Droga , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Glucose/efeitos adversos , Humanos , Estresse Oxidativo/efeitos dos fármacosRESUMO
AIMS: Earlier it had been found by us that apolipoprotein A-I (apo A-I) is suppressed by histamine in HepG2 cells. Histamine has been shown to regulate NF-κB activity, though not in hepatocytes. Therefore we examined the role of the histamine receptors and NF-κB in histamine-mediated apo A-I gene expression in HepG2 liver cells. MAIN METHODS: The effect of histamine on histamine H1 receptor expression, and NF-κB p65 and p50 subunits was examined by Western blot. Histamine H1 receptor involvement was examined by loss-of-function (via siRNA) and gain-of-function studies overexpressing the histamine H1 receptor. The requirement for the p65 subunit of NF-κB for histamines effect was elucidated by loss-of-function studies (siRNA). Finally, the effect of histamine on NF-κB binding to the apo A-I gene promoter was examined by chromatin immunoprecipitation. KEY FINDINGS: Treatment of HepG2 cells with histamine had no effect on histamine H1 receptor expression. However, treatment with histamine increased NF-κB p65 and p50 subunit expression significantly. At low levels, the exogenous histamine H1 receptor plasmid suppressed apo A-I gene promoter activity while addition of higher levels of plasmid DNA actually increased apo A-I gene promoter activity. Inhibition of NF-κB activity with SN50 prevented histamine from repressing apo A-I promoter activity as did silencing p65 expression via siRNA. Finally, treatment with histamine increased binding of the p65 subunit of NF-κB to the apo A-I gene promoter. SIGNIFICANCE: Histamine suppresses apo A-I gene expression in hepatocytes via the histamine H1 receptor by elevating NF-κB expression and binding to the apo A-I promoter.
Assuntos
Apolipoproteína A-I/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histamina/farmacologia , NF-kappa B/metabolismo , Regiões Promotoras Genéticas , Receptores Histamínicos H1/metabolismo , Apolipoproteína A-I/metabolismo , Imunoprecipitação da Cromatina , Células Hep G2 , Humanos , NF-kappa B/genética , Receptores Histamínicos H1/genética , Transdução de SinaisRESUMO
Activation of PI3K signaling is frequently observed in triple-negative breast cancer (TNBC), yet PI3K inhibitors have shown limited clinical activity. To investigate intrinsic and adaptive mechanisms of resistance, we analyzed a panel of patient-derived xenograft models of TNBC with varying responsiveness to buparlisib, a pan-PI3K inhibitor. In a subset of patient-derived xenografts, resistance was associated with incomplete inhibition of PI3K signaling and upregulated MAPK/MEK signaling in response to buparlisib. Outlier phosphoproteome and kinome analyses identified novel candidates functionally important to buparlisib resistance, including NEK9 and MAP2K4. Knockdown of NEK9 or MAP2K4 reduced both baseline and feedback MAPK/MEK signaling and showed synthetic lethality with buparlisib in vitro A complex in/del frameshift in PIK3CA decreased sensitivity to buparlisib via NEK9/MAP2K4-dependent mechanisms. In summary, our study supports a role for NEK9 and MAP2K4 in mediating buparlisib resistance and demonstrates the value of unbiased omic analyses in uncovering resistance mechanisms to targeted therapy.Significance: Integrative phosphoproteogenomic analysis is used to determine intrinsic resistance mechanisms of triple-negative breast tumors to PI3K inhibition. Cancer Res; 78(10); 2732-46. ©2018 AACR.
Assuntos
Aminopiridinas/farmacologia , Antineoplásicos/farmacologia , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , MAP Quinase Quinase 4/genética , Morfolinas/farmacologia , Quinases Relacionadas a NIMA/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases/genética , Feminino , Humanos , Espectrometria de Massas , Camundongos , Proteômica/métodos , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais/genética , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
In a recent high throughput analysis to identify drugs that alter hepatic apolipoprotein A-I (apo A-I) expression, histamine receptor one (H1) antagonists emerged as potential apo A-1 inducing drugs. Thus the present study was undertaken to identify some of the underlying molecular mechanisms of the effect of antihistaminic drugs on apo AI production. Apo A-I levels were measured by enzyme immunoassay and Western blots. Apo A-I mRNA levels were measured by reverse transcription real-time PCR using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA as the internal control. The effects of histamine and antihistamines on apo A-I gene were determined by transient transfection of plasmids containing the apo A-I gene promoter. Histamine repressed while (H1) receptor antagonist azelastine increased apo A-I protein and mRNA levels within 48â¯h in a dose-dependent manner. Azelastine and histamine increased and suppressed, respectively, apo A-I gene promoter activity through a peroxisome proliferator activated receptor α response element. Treatment of HepG2 cells with other H1 receptor antagonists including fexofenadine, cetirizine, and diphenhydramine increased apo A-I levels in a dose-dependent manner while treatment with H2 receptor antagonists including cimetidine, famotidine, and ranitidine had no effect. We conclude that H1 receptor signaling is a novel pathway of apo A1 gene expression and therefore could be an important therapeutic target for enhancing de-novo apo A-1 synthesis.
Assuntos
Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Histamina/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Antagonistas dos Receptores Histamínicos H1/farmacologia , Antagonistas dos Receptores H2 da Histamina/farmacologia , Humanos , Fígado/citologia , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
Cancer forms specialized microenvironmental niches that promote local invasion and colonization. Engrafted patient-derived xenografts (PDXs) locally invade and colonize naïve stroma in mice while enabling unambiguous molecular discrimination of human proteins in the tumor from mouse proteins in the microenvironment. To characterize how patient breast tumors form a niche and educate naïve stroma, subcutaneous breast cancer PDXs were globally profiled by species-specific quantitative proteomics. Regulation of PDX stromal proteins by breast tumors was extensive, with 35% of the stromal proteome altered by tumors consistently across different animals and passages. Differentially regulated proteins in the stroma clustered into six signatures, which included both known and previously unappreciated contributors to tumor invasion and colonization. Stromal proteomes were coordinately regulated; however, the sets of proteins altered by each tumor were highly distinct. Integrated analysis of tumor and stromal proteins, a comparison made possible in these xenograft models, indicated that the known hallmarks of cancer contribute pleiotropically to establishing and maintaining the microenvironmental niche of the tumor. Education of the stroma by the tumor is therefore an intrinsic property of breast tumors that is highly individualized, yet proceeds by consistent, nonrandom, and defined tumor-promoting molecular alterations.