Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 621(7978): 330-335, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37587345

RESUMO

Projected responses of ocean net primary productivity to climate change are highly uncertain1. Models suggest that the climate sensitivity of phytoplankton nutrient limitation in the low-latitude Pacific Ocean plays a crucial role1-3, but this is poorly constrained by observations4. Here we show that changes in physical forcing drove coherent fluctuations in the strength of equatorial Pacific iron limitation through multiple El Niño/Southern Oscillation (ENSO) cycles, but that this was overestimated twofold by a state-of-the-art climate model. Our assessment was enabled by first using a combination of field nutrient-addition experiments, proteomics and above-water hyperspectral radiometry to show that phytoplankton physiological responses to iron limitation led to approximately threefold changes in chlorophyll-normalized phytoplankton fluorescence. We then exploited the >18-year satellite fluorescence record to quantify climate-induced nutrient limitation variability. Such synoptic constraints provide a powerful approach for benchmarking the realism of model projections of net primary productivity to climate changes.


Assuntos
Modelos Climáticos , El Niño Oscilação Sul , Ferro , Clorofila/metabolismo , Mudança Climática , Fluorescência , Ferro/metabolismo , Nutrientes/metabolismo , Oceano Pacífico , Fitoplâncton/metabolismo , Proteômica , Radiometria , Imagens de Satélites
2.
J Biol Chem ; 293(47): 18099-18109, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30217820

RESUMO

Atmospheric nitrogen fixation by photosynthetic cyanobacteria (diazotrophs) strongly influences oceanic primary production and in turn affects global biogeochemical cycles. Species of the genus Trichodesmium are major contributors to marine diazotrophy, accounting for a significant proportion of the fixed nitrogen in tropical and subtropical oceans. However, Trichodesmium spp. are metabolically constrained by the availability of iron, an essential element for both the photosynthetic apparatus and the nitrogenase enzyme. Survival strategies in low-iron environments are typically poorly characterized at the molecular level, because these bacteria are recalcitrant to genetic manipulation. Here, we studied a homolog of the iron deficiency-induced A (IdiA)/ferric uptake transporter A (FutA) protein, Tery_3377, which has been used as an in situ iron-stress biomarker. IdiA/FutA has an ambiguous function in cyanobacteria, with its homologs hypothesized to be involved in distinct processes depending on their cellular localization. Using signal sequence fusions to GFP and heterologous expression in the model cyanobacterium Synechocystis sp. PCC 6803, we show that Tery_3377 is targeted to the periplasm by the twin-arginine translocase and can complement the deletion of the native Synechocystis ferric-iron ABC transporter periplasmic binding protein (FutA2). EPR spectroscopy revealed that purified recombinant Tery_3377 has specificity for iron in the Fe3+ state, and an X-ray crystallography-determined structure uncovered a functional iron substrate-binding domain, with Fe3+ pentacoordinated by protein and buffer ligands. Our results support assignment of Tery_3377 as a functional FutA subunit of an Fe3+ ABC transporter but do not rule out dual IdiA function.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/metabolismo , Água do Mar/microbiologia , Trichodesmium/metabolismo , Proteínas de Bactérias/genética , Cristalografia por Raios X , Proteínas de Ligação ao Ferro/genética , Oceanos e Mares , Domínios Proteicos , Trichodesmium/química , Trichodesmium/genética , Trichodesmium/isolamento & purificação
3.
Sci Rep ; 8(1): 1283, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29352137

RESUMO

Iron (Fe) is an essential micronutrient for marine microbial organisms, and low supply controls productivity in large parts of the world's ocean. The high latitude North Atlantic is seasonally Fe limited, but Fe distributions and source strengths are poorly constrained. Surface ocean dissolved Fe (DFe) concentrations were low in the study region (<0.1 nM) in summer 2010, with significant perturbations during spring 2010 in the Iceland Basin as a result of an eruption of the Eyjafjallajökull volcano (up to 2.5 nM DFe near Iceland) with biogeochemical consequences. Deep water concentrations in the vicinity of the Reykjanes Ridge system were influenced by pronounced sediment resuspension, with indications for additional inputs by hydrothermal vents, with subsequent lateral transport of Fe and manganese plumes of up to 250-300 km. Particulate Fe formed the dominant pool, as evidenced by 4-17 fold higher total dissolvable Fe compared with DFe concentrations, and a dynamic exchange between the fractions appeared to buffer deep water DFe. Here we show that Fe supply associated with deep winter mixing (up to 103 nmol m-2 d-1) was at least ca. 4-10 times higher than atmospheric deposition, diffusive fluxes at the base of the summer mixed layer, and horizontal surface ocean fluxes.

4.
Synth Biol (Oxf) ; 3(1): ysy009, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-32995517

RESUMO

In this study, we exploited a modified photosynthetic electron transfer chain (PET) in the model cyanobacterium Synechococcus PCC 7002, where electrons derived from water-splitting are used to power reactions catalyzed by a heterologous cytochrome P450 (CYP1A1). A simple in vivo fluorescent assay for CYP1A1 activity was employed to determine the impact of rationally engineering of photosynthetic electron flow. This showed that knocking out a subunit of the type I NADH dehydrogenase complex (NDH-1), suggested to be involved in cyclic photosynthetic electron flow (ΔndhD2), can double the activity of CYP1A1, with a concomitant increase in the flux of electrons from photosynthesis. This also resulted in an increase in cellular adenosine triphosphate (ATP) and the ATP/nicotinamide adenine dinucleotide phosphate (NADPH) ratio, suggesting that expression of a heterologous electron sink in photosynthetic organisms can be used to modify the bioenergetic landscape of the cell. We therefore demonstrate that CYP1A1 is limited by electron supply and that photosynthesis can be re-engineered to increase heterologous P450 activity for the production of high-value bioproducts. The increase in cellular ATP achieved could be harnessed to support metabolically demanding heterologous processes. Furthermore, this experimental system could provide valuable insights into the mechanisms of photosynthesis.

5.
FEMS Microbiol Lett ; 363(21)2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27797867

RESUMO

Polyploidy is a well-described trait in some prokaryotic organisms; however, it is unusual in marine microbes from oligotrophic environments, which typically display a tendency towards genome streamlining. The biogeochemically significant diazotrophic cyanobacterium Trichodesmium is a potential exception. With a relatively large genome and a comparatively high proportion of non-protein-coding DNA, Trichodesmium appears to allocate relatively more resources to genetic material than closely related organisms and microbes within the same environment. Through simultaneous analysis of gene abundance and direct cell counts, we show for the first time that Trichodesmium spp. can also be highly polyploid, containing as many as 100 genome copies per cell in field-collected samples and >600 copies per cell in laboratory cultures. These findings have implications for the widespread use of the abundance of the nifH gene (encoding a subunit of the N2-fixing enzyme nitrogenase) as an approach for quantifying the abundance and distribution of marine diazotrophs. Moreover, polyploidy may combine with the unusual genomic characteristics of this genus both in reflecting evolutionary dynamics and influencing phenotypic plasticity and ecological resilience.

6.
PLoS One ; 10(11): e0142626, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26562022

RESUMO

Trichodesmium is a biogeochemically important marine cyanobacterium, responsible for a significant proportion of the annual 'new' nitrogen introduced into the global ocean. These non-heterocystous filamentous diazotrophs employ a potentially unique strategy of near-concurrent nitrogen fixation and oxygenic photosynthesis, potentially burdening Trichodesmium with a particularly high iron requirement due to the iron-binding proteins involved in these processes. Iron availability may therefore have a significant influence on the biogeography of Trichodesmium. Previous investigations of molecular responses to iron stress in this keystone marine microbe have largely been targeted. Here a holistic approach was taken using a label-free quantitative proteomics technique (MSE) to reveal a sophisticated multi-faceted proteomic response of Trichodesmium erythraeum IMS101 to iron stress. Increased abundances of proteins known to be involved in acclimation to iron stress and proteins known or predicted to be involved in iron uptake were observed, alongside decreases in the abundances of iron-binding proteins involved in photosynthesis and nitrogen fixation. Preferential loss of proteins with a high iron content contributed to overall reductions of 55-60% in estimated proteomic iron requirements. Changes in the abundances of iron-binding proteins also suggested the potential importance of alternate photosynthetic pathways as Trichodesmium reallocates the limiting resource under iron stress. Trichodesmium therefore displays a significant and integrated proteomic response to iron availability that likely contributes to the ecological success of this species in the ocean.


Assuntos
Proteínas de Bactérias/metabolismo , Cianobactérias/efeitos dos fármacos , Cianobactérias/metabolismo , Ferro/farmacologia , Proteoma/metabolismo , Proteômica/métodos , Cromatografia Líquida , Relação Dose-Resposta a Droga , Espectrometria de Massas , Estresse Fisiológico
7.
Environ Microbiol Rep ; 7(6): 824-30, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26081517

RESUMO

Species belonging to the filamentous cyanobacterial genus Trichodesmium are responsible for a significant fraction of oceanic nitrogen fixation. The availability of phosphorus (P) likely constrains the growth of Trichodesmium in certain regions of the ocean. Moreover, Trichodesmium species have recently been shown to play a role in an emerging oceanic phosphorus redox cycle, further highlighting the key role these microbes play in many biogeochemical processes in the contemporary ocean. Here, we show that Trichodesmium erythraeum IMS101 can grow on the reduced inorganic compound phosphite as its sole source of P. The components responsible for phosphite utilization are identified through heterologous expression of the T. erythraeum IMS101 Tery_0365-0368 genes, encoding a putative adenosine triphosphate (ATP)-binding cassette transporter and nicotinamide adenine dinucleotide (NAD)-dependent dehydrogenase, in the model cyanobacteria Synechocystis sp. PCC6803. We demonstrate that only combined expression of both the transporter and the dehydrogenase enables Synechocystis to utilize phosphite, confirming the function of Tery_0365-0367 as a phosphite uptake system (PtxABC) and Tery_0368 as a phosphite dehydrogenase (PtxD). Our findings suggest that reported uptake of phosphite by Trichodesmium consortia in the field likely reflects an active biological process by Trichodesmium. These results highlight the diversity of phosphorus sources available to Trichodesmium in a resource-limited ocean.


Assuntos
Organismos Aquáticos/metabolismo , Cianobactérias/metabolismo , Fosfitos/metabolismo , Cianobactérias/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Ordem dos Genes , Fixação de Nitrogênio , Oceanos e Mares
8.
PLoS One ; 7(5): e35571, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22563465

RESUMO

Marine cyanobacteria of the genus Trichodesmium occur throughout the oligotrophic tropical and subtropical oceans, where they can dominate the diazotrophic community in regions with high inputs of the trace metal iron (Fe). Iron is necessary for the functionality of enzymes involved in the processes of both photosynthesis and nitrogen fixation. We combined laboratory and field-based quantifications of the absolute concentrations of key enzymes involved in both photosynthesis and nitrogen fixation to determine how Trichodesmium allocates resources to these processes. We determined that protein level responses of Trichodesmium to iron-starvation involve down-regulation of the nitrogen fixation apparatus. In contrast, the photosynthetic apparatus is largely maintained, although re-arrangements do occur, including accumulation of the iron-stress-induced chlorophyll-binding protein IsiA. Data from natural populations of Trichodesmium spp. collected in the North Atlantic demonstrated a protein profile similar to iron-starved Trichodesmium in culture, suggestive of acclimation towards a minimal iron requirement even within an oceanic region receiving a high iron-flux. Estimates of cellular metabolic iron requirements are consistent with the availability of this trace metal playing a major role in restricting the biomass and activity of Trichodesmium throughout much of the subtropical ocean.


Assuntos
Proteínas de Bactérias/metabolismo , Cianobactérias/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Ferro/metabolismo , Aclimatação/efeitos dos fármacos , Oceano Atlântico , Clorofila/metabolismo , Cianobactérias/efeitos dos fármacos , Cianobactérias/fisiologia , Relação Dose-Resposta a Droga , Geografia , Ferro/farmacologia , Fixação de Nitrogênio/efeitos dos fármacos , Oxirredutases/metabolismo , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Microbiologia da Água
9.
J Phycol ; 48(1): 145-54, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27009659

RESUMO

Iron availability limits primary production in >30% of the world's oceans; hence phytoplankton have developed acclimation strategies. In particular, cyanobacteria express IsiA (iron-stress-induced) under iron stress, which can become the most abundant chl-binding protein in the cell. Within iron-limited oceanic regions with significant cyanobacterial biomass, IsiA may represent a significant fraction of the total chl. We spectroscopically measured the effective cross-section of the photosynthetic reaction center PSI (σPSI ) in vivo and biochemically quantified the absolute abundance of PSI, PSII, and IsiA in the model cyanobacterium Synechocystis sp. PCC 6803. We demonstrate that accumulation of IsiA results in a ∼60% increase in σPSI , in agreement with the theoretical increase in cross-section based on the structure of the biochemically isolated IsiA-PSI supercomplex from cyanobacteria. Deriving a chl budget, we suggest that IsiA plays a primary role as a light-harvesting antenna for PSI. On progressive iron-stress in culture, IsiA continues to accumulate without a concomitant increase in σPSI , suggesting that there may be a secondary role for IsiA. In natural populations, the potential physiological significance of the uncoupled pool of IsiA remains to be established. However, the functional role as a PSI antenna suggests that a large fraction of IsiA-bound chl is directly involved in photosynthetic electron transport.

10.
Nature ; 457(7229): 577-80, 2009 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-19177128

RESUMO

The addition of iron to high-nutrient, low-chlorophyll regions induces phytoplankton blooms that take up carbon. Carbon export from the surface layer and, in particular, the ability of the ocean and sediments to sequester carbon for many years remains, however, poorly quantified. Here we report data from the CROZEX experiment in the Southern Ocean, which was conducted to test the hypothesis that the observed north-south gradient in phytoplankton concentrations in the vicinity of the Crozet Islands is induced by natural iron fertilization that results in enhanced organic carbon flux to the deep ocean. We report annual particulate carbon fluxes out of the surface layer, at three kilometres below the ocean surface and to the ocean floor. We find that carbon fluxes from a highly productive, naturally iron-fertilized region of the sub-Antarctic Southern Ocean are two to three times larger than the carbon fluxes from an adjacent high-nutrient, low-chlorophyll area not fertilized by iron. Our findings support the hypothesis that increased iron supply to the glacial sub-Antarctic may have directly enhanced carbon export to the deep ocean. The CROZEX sequestration efficiency (the amount of carbon sequestered below the depth of winter mixing for a given iron supply) of 8,600 mol mol(-1) was 18 times greater than that of a phytoplankton bloom induced artificially by adding iron, but 77 times smaller than that of another bloom initiated, like CROZEX, by a natural supply of iron. Large losses of purposefully added iron can explain the lower efficiency of the induced bloom(6). The discrepancy between the blooms naturally supplied with iron may result in part from an underestimate of horizontal iron supply.


Assuntos
Carbono/metabolismo , Ferro/metabolismo , Água do Mar/química , Regiões Antárticas , Clorofila/análise , Clorofila/metabolismo , Clorofila A , Eutrofização , Geografia , Sedimentos Geológicos/química , Oceanos e Mares , Fitoplâncton/metabolismo , Estações do Ano , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA