Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncologist ; 29(8): 716-720, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38920278

RESUMO

Prostate cancer is one of the most prevalent malignancies in men. In the United States, 1 in 8 men will be diagnosed with prostate cancer in their lifetime. Specifically, studies have delved into male subgroups that present a heightened risk for prostate cancer. Despite such high prevalence, prostate cancer can be heterogeneous and carry complexities that manifest differently between individuals. Metastatic hormone-sensitive prostate cancer (mHSPC) often has an abbreviated, aggressive disease course, and can have varying presentations with different molecular profiles that determine response/resistance to the approved treatments targeting the androgen-receptor pathway (eg, enzalutamide, apalutamide, darolutamide, and abiraterone acetate). We present a case of mHSPC quickly progressing to mCRPC, found to have microsatellite instability in mCRPC and excellent response to pembrolizumab, which raises the critical issues of early molecular testing and treatments personalized for the individual patient.


Assuntos
Anticorpos Monoclonais Humanizados , Proteína BRCA2 , Instabilidade de Microssatélites , Mutação , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Anticorpos Monoclonais Humanizados/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Proteína BRCA2/genética , Indução de Remissão , Idoso , Pessoa de Meia-Idade
2.
Med Rev (2021) ; 4(3): 173-191, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38919400

RESUMO

As a key sensor of double-stranded DNA (dsDNA), cyclic GMP-AMP synthase (cGAS) detects cytosolic dsDNA and initiates the synthesis of 2'3' cyclic GMP-AMP (cGAMP) that activates the stimulator of interferon genes (STING). This finally promotes the production of type I interferons (IFN-I) that is crucial for bridging innate and adaptive immunity. Recent evidence show that several antitumor therapies, including radiotherapy (RT), chemotherapy, targeted therapies and immunotherapies, activate the cGAS-STING pathway to provoke the antitumor immunity. In the last decade, the development of STING agonists has been a major focus in both basic research and the pharmaceutical industry. However, up to now, none of STING agonists have been approved for clinical use. Considering the broad expression of STING in whole body and the direct lethal effect of STING agonists on immune cells in the draining lymph node (dLN), research on the optimal way to activate STING in tumor microenvironment (TME) appears to be a promising direction. Moreover, besides enhancing IFN-I signaling, the cGAS-STING pathway also plays roles in senescence, autophagy, apoptosis, mitotic arrest, and DNA repair, contributing to tumor development and metastasis. In this review, we summarize the recent advances on cGAS-STING pathway's response to antitumor therapies and the strategies involving this pathway for tumor treatment.

3.
Sci Rep ; 14(1): 8250, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589494

RESUMO

Personalized, ultra-fractionated stereotactic adaptive radiotherapy (PULSAR) is designed to administer tumoricidal doses in a pulsed mode with extended intervals, spanning weeks or months. This approach leverages longer intervals to adapt the treatment plan based on tumor changes and enhance immune-modulated effects. In this investigation, we seek to elucidate the potential synergy between combined PULSAR and PD-L1 blockade immunotherapy using experimental data from a Lewis Lung Carcinoma (LLC) syngeneic murine cancer model. Employing a long short-term memory (LSTM) recurrent neural network (RNN) model, we simulated the treatment response by treating irradiation and anti-PD-L1 as external stimuli occurring in a temporal sequence. Our findings demonstrate that: (1) The model can simulate tumor growth by integrating various parameters such as timing and dose, and (2) The model provides mechanistic interpretations of a "causal relationship" in combined treatment, offering a completely novel perspective. The model can be utilized for in-silico modeling, facilitating exploration of innovative treatment combinations to optimize therapeutic outcomes. Advanced modeling techniques, coupled with additional efforts in biomarker identification, may deepen our understanding of the biological mechanisms underlying the combined treatment.


Assuntos
DEAE-Dextrano , Radiocirurgia , Animais , Camundongos , Imunoterapia/métodos , Redes Neurais de Computação , Terapia Combinada , Antígeno B7-H1
4.
Nat Cell Biol ; 24(12): 1754-1765, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36474070

RESUMO

Immune checkpoint blockade (ICB)-based immunotherapy depends on functional tumour-infiltrating lymphocytes (TILs), but essential cytokines are less understood. Here we uncover an essential role of endogenous IL-2 for ICB responsiveness and the correlation between insufficient IL-2 signalling and T-cell exhaustion as tumours progress. To determine if exogenous IL-2 in the tumour microenvironment can overcome ICB resistance, we engineered mesenchymal stem cells (MSCs) to successfully deliver IL-2 mutein dimer (SIL2-EMSC) to TILs. While MSCs have been used to suppress inflammation, SIL2-EMSCs elicit anti-tumour immunity and overcome ICB resistance without toxicity. Mechanistically, SIL2-EMSCs activate and expand pre-existing CD8+ TILs, sufficient for tumour control and induction of systemic anti-tumour effects. Furthermore, engineered MSCs create synergy of innate and adaptive immunity. The therapeutic benefits of SIL2-EMSCs were also observed in humanized mouse models. Overall, engineered MSCs rejuvenate CD8+ TILs and thus potentiate ICB and chemotherapy.


Assuntos
Células-Tronco Mesenquimais , Neoplasias , Animais , Camundongos , Linfócitos T CD8-Positivos , Interleucina-2/genética , Interleucina-2/farmacologia , Neoplasias/terapia , Microambiente Tumoral
5.
JCI Insight ; 7(17)2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36073543

RESUMO

It is known that tumor-reactive T cells are initially activated in the draining lymph node, but it is not well known whether and how tumor-infiltrating lymphocytes (TILs) are reactivated in the tumor microenvironment (TME). We hypothesize that defective T cell receptor (TCR) signaling and cosignals in the TME limit T cell reactivation. To address this, we designed a mesenchymal stromal cell-based delivery of local membrane-bound anti-CD3 and/or cosignals to explore their contribution to reactivate T cells inside the TME. Combined anti-CD3 and CD40L rather than CD80 led to superior antitumor efficacy compared with either alone. Mechanistically, TCR activation of preexisting CD8+ T cells synergized with CD40L activation of DCs inside the TME for optimum tumor control. Exogenous TCR signals could better reactivate TILs that then exited to attack distal tumors. This study supplies further evidence that TCR signaling for T cell reactivation in the TME is defective but can be rescued by proper exogenous signals.


Assuntos
Neoplasias , Microambiente Tumoral , Ligante de CD40 , Humanos , Receptores de Antígenos de Linfócitos T , Transdução de Sinais
6.
Nat Cancer ; 3(4): 437-452, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35393580

RESUMO

Neoantigen vaccines aiming to induce tumor-specific T cell responses have achieved promising antitumor effects in early clinical trials. However, the underlying mechanism regarding response or resistance to this treatment is unclear. Here we observe that neoantigen vaccine-generated T cells can synergize with the immune checkpoint blockade for effective tumor control. Specifically, we performed single-cell sequencing on over 100,000 T cells and uncovered that combined therapy induces an antigen-specific CD8 T cell population with active chemokine signaling (Cxcr3+/Ccl5+), lower co-inhibitory receptor expression (Lag3-/Havcr2-) and higher cytotoxicity (Fasl+/Gzma+). Furthermore, generation of neoantigen-specific T cells in the draining lymph node is required for combination treatment. Signature genes of this unique population are associated with T cell clonal frequency and better survival in humans. Our study profiles the dynamics of tumor-infiltrating T cells during neoantigen vaccine and immune checkpoint blockade treatments and high-dimensionally identifies neoantigen-reactive T cell signatures for future development of therapeutic strategies.


Assuntos
Vacinas Anticâncer , Neoplasias , Antígenos de Neoplasias , Linfócitos T CD8-Positivos , Humanos , Inibidores de Checkpoint Imunológico , Neoplasias/terapia
7.
Nat Biomed Eng ; 5(11): 1261-1273, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34725504

RESUMO

Bispecific T-cell engagers (BiTEs) preferentially targeting tumour-associated antigens and stimulating CD3-mediated signalling are being used in patients to treat acute B-cell lymphoblastic leukemia. However, the potency of BiTEs in solid tumours is limited by their short half-life and their severe toxicity at relevant therapeutic doses. Here we report the design and in vivo performance of a bispecific antibody that simultaneously targets the murine T-cell co-receptor CD3ε and the murine immune checkpoint programmed-death ligand 1 (PD-L1). In multiple syngeneic tumour models, the bispecific antibody generated higher antitumour immune responses than conventional BiTEs targeting tumour-associated antigens and CD3ε. We found that the durable antigen-specific T-cell responses resulted from the rejuvenation of CD8 T cells, owing to the blockade of PD-L1 on dendritic cells (but not on tumour cells) and co-stimulation by B7-1&2 (a peripheral membrane protein on dendritic cells). Bispecific T-cell engagers targeting dendritic cells rather than tumour cells may represent a general means of T-cell rejuvenation for durable cancer immunotherapy.


Assuntos
Anticorpos Biespecíficos , Antígeno B7-H1/antagonistas & inibidores , Células Dendríticas , Neoplasias , Linfócitos T/imunologia , Animais , Humanos , Camundongos , Neoplasias/terapia
8.
Int J Radiat Oncol Biol Phys ; 110(5): 1306-1316, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33794306

RESUMO

PURPOSE: Harnessing the immune-stimulatory effects of radiation by combining it with immunotherapy is a promising new treatment strategy. However, more studies characterizing immunotherapy and radiation dose scheduling for the optimal therapeutic effect is essential for designing clinical trials. METHODS AND MATERIALS: A new ablative radiation dosing scheme, personalized ultrafractionated stereotactic adaptive radiation therapy (PULSAR), was tested in combination with α-PD-L1 therapy in immune-activated and resistant syngeneic immunocompetent mouse models of cancer. Specifically, tumor growth curves comparing immunotherapy and radiation therapy dose sequencing were evaluated in immunologically cold and hot tumor models. The response relative to cytotoxic killer T cells was evaluated using an α-CD8 depleting antibody, and immunologic memory was tested by tumor rechallenge of cured mice. RESULTS: We report that both radiation and immunotherapy sequencing, as well as radiation therapy fraction spacing, affect the combination treatment response. Better tumor control was achieved by giving α-PD-L1 therapy during or after radiation, and spacing fractions 10 days apart (PULSAR) achieved better tumor control than traditional daily fractions. We showed that CD8+ depleting antibody abrogated tumor control in the PULSAR combination treatment, and certain treatment schedules induced immunologic memory. CONCLUSIONS: These results illustrate that radiation therapy dosing and scheduling affect tumor control, in combination with checkpoint blockade therapies. PULSAR-style radiation dosing is more complementary in combination with single-agent immunotherapy than traditional daily fractions in this preclinical model. Preclinical investigation could prove helpful in designing clinical trials investigating combination therapy.


Assuntos
Carcinoma Pulmonar de Lewis/terapia , Neoplasias do Colo/terapia , Fracionamento da Dose de Radiação , Inibidores de Checkpoint Imunológico/farmacologia , Medicina de Precisão/métodos , Radioimunoterapia/métodos , Radiocirurgia/métodos , Animais , Antígeno B7-H1 , Carcinoma Pulmonar de Lewis/imunologia , Linhagem Celular Tumoral , Neoplasias do Colo/imunologia , Feminino , Memória Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Dosagem Radioterapêutica , Distribuição Aleatória , Linfócitos T Citotóxicos , Resultado do Tratamento
9.
Oncogene ; 40(5): 885-898, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33288883

RESUMO

Recently, immune checkpoint blockade (ICB), especially anti-programmed death 1 (anti-PD-1) and anti-programmed death-ligand 1 (anti-PD-L1) therapy, has become an increasingly appealing therapeutic strategy for cancer patients. However, only a small portion of patients responds to anti-PD treatment. Therefore, treatment strategies are urgently needed to reverse the ICB-resistant tumor microenvironment (TME). It has become clear that the TME has diminished innate sensing that is critical to activate adaptive immunity. In addition, tumor cells upregulate various immunosuppressive factors to diminish the immune response and resist immunotherapy. In this review, we briefly update the current small molecular drugs that could synergize with immunotherapy, especially anti-PD therapy. We will discuss the modes of action by those drugs including inducing innate sensing and limiting immunosuppressive factors in the TME.


Assuntos
Antígeno B7-H1/genética , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Fatores Imunológicos/uso terapêutico , Imunoterapia , Neoplasias/imunologia , Neoplasias/patologia , Neovascularização Patológica/imunologia , Neovascularização Patológica/patologia , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
10.
Nat Immunol ; 21(11): 1470, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32939095

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

11.
Nat Immunol ; 21(5): 546-554, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32231300

RESUMO

High-dose radiation activates caspases in tumor cells to produce abundant DNA fragments for DNA sensing in antigen-presenting cells, but the intrinsic DNA sensing in tumor cells after radiation is rather limited. Here we demonstrate that irradiated tumor cells hijack caspase 9 signaling to suppress intrinsic DNA sensing. Instead of apoptotic genomic DNA, tumor-derived mitochondrial DNA triggers intrinsic DNA sensing. Specifically, loss of mitochondrial DNA sensing in Casp9-/- tumors abolishes the enhanced therapeutic effect of radiation. We demonstrated that combining emricasan, a pan-caspase inhibitor, with radiation generates synergistic therapeutic effects. Moreover, loss of CASP9 signaling in tumor cells led to adaptive resistance by upregulating programmed death-ligand 1 (PD-L1) and resulted in tumor relapse. Additional anti-PD-L1 blockade can further overcome this acquired immune resistance. Therefore, combining radiation with a caspase inhibitor and anti-PD-L1 can effectively control tumors by sequentially blocking both intrinsic and extrinsic inhibitory signaling.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Caspase 9/metabolismo , Inibidores de Caspase/uso terapêutico , Quimiorradioterapia/métodos , Neoplasias Colorretais/terapia , Ácidos Pentanoicos/uso terapêutico , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Caspase 9/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transplante de Neoplasias , Transdução de Sinais , Regulação para Cima
12.
Cancer Cell ; 35(6): 901-915.e4, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31185213

RESUMO

Increasing evidence demonstrates that interleukin-10 (IL-10), known as an immunosuppressive cytokine, induces antitumor effects depending on CD8+ T cells. However, it remains elusive how immunosuppressive effects of IL-10 contribute to CD8+ T cell-mediated antitumor immunity. We generated Cetuximab-based IL-10 fusion protein (CmAb-(IL10)2) to prolong its half-life and allow tumor-targeted delivery of IL-10. Our results demonstrated potent antitumor effects of CmAb-(IL10)2 with reduced toxicity. Moreover, we revealed a mechanism of CmAb-(IL10)2 preventing dendritic cell (DC)-mediated CD8+ tumor-infiltrating lymphocyte apoptosis through regulating IFN-γ production. When combined with immune checkpoint blockade, CmAb-(IL10)2 significantly improves antitumor effects in mice with advanced tumors. Our findings reveal a DC-regulating role of IL-10 to potentiate CD8+ T cell-mediated antitumor immunity and provide a potential strategy to improve cancer immunotherapy.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Apoptose/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Cetuximab/farmacologia , Células Dendríticas/efeitos dos fármacos , Interleucina-10/farmacologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos Imunológicos/farmacocinética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Comunicação Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cetuximab/farmacocinética , Técnicas de Cocultura , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Interleucina-10/farmacocinética , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Terapia de Alvo Molecular , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Recombinantes de Fusão/farmacologia , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Neurooncol ; 74(3): 275-80, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16132519

RESUMO

Boron-neutron capture therapy (BNCT) is based on the preferential targeting of tumor cells with (10)B and subsequent irradiation with epithermal neutrons to produce a highly localized field of lethal alpha particles, while sparing neighboring non-targeted cells. BNCT treatment of 9L brain tumors in a rat model using beta-D-5-o-carboranyl-2'-deoxyuridine (D-CDU) resulted in greater efficacy than predicted based on the assumption of a uniform tumor distribution of (10)B. Thus, the geometric heterogeneity of dividing cells in brain tumors warranted studies on the cell cycle dependency of D-CDU accumulation, metabolism and entrapment in a relevant brain tumor cell system. U-271 human glioma cells were synchronized in G(1) or S-phases of the cell cycle. The cellular accumulation and phosphorylation of D-CDU was measured in the G(1) and S-phase cells using high-performance liquid chromatography (HPLC). Cells synchronized in the S-phase accumulated significantly higher amounts of D-CDU and produced larger amounts of negatively charged D-CDU monophosphate (D-CDU-MP) and nido-CDU metabolites than resting cells. Since brain tumors contain a larger proportion of cycling cells than neighboring tissue, these results support the hypothesis that in addition to breakdown of the blood-brain-barrier (BBB) in tumors, the preferential phosphorylation of D-CDU in cycling cells may further enrich the distribution of (10)B in dividing cells. Therefore, dosimetry calculations that include the spatial distribution of cycling cells may be warranted for D-CDU.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias Encefálicas/metabolismo , Ciclo Celular/fisiologia , Desoxiuridina/metabolismo , Glioma/metabolismo , Radiossensibilizantes/metabolismo , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Proliferação de Células , Cromatografia Líquida de Alta Pressão , Desoxiuridina/uso terapêutico , Citometria de Fluxo , Glioma/terapia , Humanos , Radiossensibilizantes/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA