Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Circulation ; 146(24): 1836-1854, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-35862223

RESUMO

BACKGROUND: Transcatheter aortic valve replacement (TAVR) is a well-established treatment option for high- and intermediate-risk patients with severe symptomatic aortic valve stenosis. A majority of patients exhibit improvements in left ventricular ejection fraction (LVEF) after TAVR in response to TAVR-associated afterload reduction. However, a specific role for circulating microRNAs (miRNAs) in the improvement of cardiac function for patients after TAVR has not yet been investigated. Here, we profiled the differential expression of miRNAs in circulating extracellular vesicles (EVs) in patients after TAVR and, in particular, the novel role of circulating miR-122-5p in cardiomyocytes. METHODS: Circulating EV-associated miRNAs were investigated by use of an unbiased Taqman-based human miRNA array. Several EV miRNAs (miR-122-5p, miR-26a, miR-192, miR-483-5p, miR-720, miR-885-5p, and miR-1274) were significantly deregulated in patients with aortic valve stenosis at day 7 after TAVR compared with the preprocedural levels in patients without LVEF improvement. The higher levels of miR-122-5p were negatively correlated with LVEF improvement at both day 7 (r=-0.264 and P=0.015) and 6 months (r=-0.328 and P=0.0018) after TAVR. RESULTS: Using of patient-derived samples and a murine aortic valve stenosis model, we observed that the expression of miR-122-5p correlates negatively with cardiac function, which is associated with LVEF. Mice with graded wire injury-induced aortic valve stenosis demonstrated a higher level of miR-122-5p, which was related to cardiomyocyte dysfunction. Murine ex vivo experiments revealed that miR-122-5p is highly enriched in endothelial cells compared with cardiomyocytes. Coculture experiments, copy-number analysis, and fluorescence microscopy with Cy3-labeled miR-122-5p demonstrated that miR-122-5p can be shuttled through large EVs from endothelial cells into cardiomyocytes. Gain- and loss-of-function experiments suggested that EV-mediated shuttling of miR-122-5p increases the level of miR-122-5p in recipient cardiomyocytes. Mechanistically, mass spectrometry, miRNA pulldown, electrophoretic mobility shift assay, and RNA immunoprecipitation experiments confirmed that miR-122-5p interacts with the RNA-binding protein hnRNPU (heterogeneous nuclear ribonucleoprotein U) in a sequence-specific manner to encapsulate miR-122-5p into large EVs. On shuttling, miR-122-5p reduces the expression of the antiapoptotic gene BCL2 by binding to its 3' untranslated region to inhibit its translation, thereby decreasing the viability of target cardiomyocytes. CONCLUSIONS: Increased levels of circulating proapoptotic EV-incorporated miR-122-5p are associated with reduced LVEF after TAVR. EV shuttling of miR-122-5p regulates the viability and apoptosis of cardiomyocytes in a BCL2-dependent manner.


Assuntos
Estenose da Valva Aórtica , MicroRNA Circulante , Vesículas Extracelulares , MicroRNAs , Substituição da Valva Aórtica Transcateter , Humanos , Camundongos , Animais , Substituição da Valva Aórtica Transcateter/métodos , Função Ventricular Esquerda/fisiologia , Volume Sistólico/fisiologia , Células Endoteliais , Estenose da Valva Aórtica/cirurgia , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-bcl-2 , Valva Aórtica/cirurgia , Resultado do Tratamento
2.
Sci Rep ; 10(1): 14754, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32901075

RESUMO

Although cardiac mesenchymal cell (CMC) therapy mitigates post-infarct cardiac dysfunction, the underlying mechanisms remain unidentified. It is acknowledged that donor cells are neither appreciably retained nor meaningfully contribute to tissue regeneration-suggesting a paracrine-mediated mechanism of action. As the immune system is inextricably linked to wound healing/remodeling in the ischemically injured heart, the reparative actions of CMCs may be attributed to their immunoregulatory properties. The current study evaluated the consequences of CMC administration on post myocardial infarction (MI) immune responses in vivo and paracrine-mediated immune cell function in vitro. CMC administration preferentially elicited the recruitment of cell types associated with innate immunity (e.g., monocytes/macrophages and neutrophils). CMC paracrine signaling assays revealed enhancement in innate immune cell chemoattraction, survival, and phagocytosis, and diminished pro-inflammatory immune cell activation; data that identifies and catalogues fundamental immunomodulatory properties of CMCs, which have broad implications regarding the mechanism of action of CMCs in cardiac repair.


Assuntos
Imunidade Inata/imunologia , Macrófagos/imunologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Infarto do Miocárdio/imunologia , Miócitos Cardíacos/citologia , Neutrófilos/imunologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Comunicação Parácrina
5.
Stem Cell Rev Rep ; 15(4): 530-542, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31102187

RESUMO

While the fundamental mechanism by which cardiac cell therapy mitigates ventricular dysfunction in the post ischemic heart remains poorly defined, donor cell paracrine signaling is presumed to be a chief contributor to the afforded benefits. Of the many bioactive molecules secreted by transplanted cells, extracellular vesicles (EVs) and their proteinaceous, nucleic acid, and lipid rich contents, comprise a heterogeneous assortment of prospective cardiotrophic factors-whose involvement in the activation of endogenous cardiac repair mechanism(s), including reducing fibrosis and promoting angiogenesis, have yet to be fully explained. In the current study we aimed to interrogate potential mechanisms by which cardiac mesenchymal stromal cell (CMC)-derived EVs contribute to the CMC pro-angiogenic paracrine signaling capacity in vitro. Vesicular transmission and biological activity of human CMC-derived EVs was evaluated in in vitro assays for human umbilical vein endothelial cell (HUVEC) function, including EV uptake, cell survival, migration, tube formation, and intracellular pathway activation. HUVECs incubated with EVs exhibited augmented cell migration, tube formation, and survival under peroxide exposure; findings which paralleled enhanced activation of the archetypal pro-survival/pro-angiogenic pathways, STAT3 and PI3K-AKT. Cytokine array analyses revealed preferential enrichment of a subset of prototypical angiogenic factors, Ang-1 and Ang-2, in CMC EVs. Interestingly, pharmacologic inhibition of Tie2 in HUVECs, the cognate receptors of angiopoietins, efficiently attenuated CMC-EV-induced HUVEC migration. Further, in additional assays a Tie2 kinase inhibitor exhibited specificity to inhibit Ang-1-, but not Ang-2-, induced HUVEC migration. Overall, these findings suggest that the pro-angiogenic activities of CMC EVs are principally mediated by Ang-1-Tie2 signaling.


Assuntos
Angiopoietina-1/metabolismo , Angiopoietina-2/metabolismo , Movimento Celular , Vesículas Extracelulares/metabolismo , Miócitos Cardíacos/metabolismo , Neovascularização Fisiológica , Fator 2 de Crescimento de Fibroblastos/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Miócitos Cardíacos/citologia , Receptor TIE-2/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Basic Res Cardiol ; 114(1): 3, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30446837

RESUMO

Preclinical investigations support the concept that donor cells more oriented towards a cardiovascular phenotype favor repair. In light of this philosophy, we previously identified HDAC1 as a mediator of cardiac mesenchymal cell (CMC) cardiomyogenic lineage commitment and paracrine signaling potency in vitro-suggesting HDAC1 as a potential therapeutically exploitable target to enhance CMC cardiac reparative capacity. In the current study, we examined the effects of pharmacologic HDAC1 inhibition, using the benzamide class 1 isoform-selective HDAC inhibitor entinostat (MS-275), on CMC cardiomyogenic lineage commitment and CMC-mediated myocardial repair in vivo. Human CMCs pre-treated with entinostat or DMSO diluent control were delivered intramyocardially in an athymic nude rat model of chronic ischemic cardiomyopathy 30 days after a reperfused myocardial infarction. Indices of cardiac function were assessed by echocardiography and left ventricular (LV) Millar conductance catheterization 35 days after treatment. Compared with naïve CMCs, entinostat-treated CMCs exhibited heightened capacity for myocyte-like differentiation in vitro and superior ability to attenuate LV remodeling and systolic dysfunction in vivo. The improvement in CMC therapeutic efficacy observed with entinostat pre-treatment was not associated with enhanced donor cell engraftment, cardiomyogenesis, or vasculogenesis, but instead with more efficient inhibition of myocardial fibrosis and greater increase in myocyte size. These results suggest that HDAC inhibition enhances the reparative capacity of CMCs, likely via a paracrine mechanism that improves ventricular compliance and contraction and augments myocyte growth and function.


Assuntos
Histona Desacetilase 1/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/patologia , Animais , Benzamidas/farmacologia , Fibrose , Xenoenxertos , Humanos , Células-Tronco Mesenquimais/metabolismo , Piridinas/farmacologia , Ratos , Ratos Nus , Recuperação de Função Fisiológica
7.
J Am Heart Assoc ; 6(7)2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28679560

RESUMO

BACKGROUND: Cardiac mesenchymal cell (CMC) administration improves cardiac function in animal models of heart failure. Although the precise mechanisms remain unclear, transdifferentiation and paracrine signaling are suggested to underlie their cardiac reparative effects. We have shown that histone deacetylase 1 (HDAC1) inhibition enhances CMC cardiomyogenic lineage commitment. Here, we investigated the impact of HDAC1 on CMC cytokine secretion and associated paracrine-mediated activities on endothelial cell function. METHODS AND RESULTS: CMCs were transduced with shRNA constructs targeting HDAC1 (shHDAC1) or nontarget (shNT) control. Cytokine arrays were used to assess the expression of secreted proteins in conditioned medium (CM) from shHDAC1 or shNT-transduced CMCs. In vitro functional assays for cell proliferation, protection from oxidative stress, cell migration, and tube formation were performed on human endothelial cells incubated with CM from the various treatment conditions. CM from shHDAC1-transduced CMCs contained more cytokines involved in cell growth/differentiation and more efficiently promoted endothelial cell proliferation and tube formation compared with CM from shNT. After evaluating key cytokines previously implicated in cell-therapy-mediated cardiac repair, we found that basic fibroblast growth factor was significantly upregulated in shHDAC1-transduced CMCs. Furthermore, shRNA-mediated knockdown of basic fibroblast growth factor in HDAC1-depleted CMCs inhibited the effects of shHDAC1 CM in promoting endothelial proliferation and tube formation-indicating that HDAC1 depletion activates CMC proangiogenic paracrine signaling in a basic fibroblast growth factor-dependent manner. CONCLUSIONS: These results reveal a hitherto unknown role for HDAC1 in the modulation of CMC cytokine secretion and implicate the targeted inhibition of HDAC1 in CMCs as a means to enhance paracrine-mediated neovascularization in cardiac cell therapy applications.


Assuntos
Proteínas Angiogênicas/biossíntese , Fator 2 de Crescimento de Fibroblastos/biossíntese , Coração , Histona Desacetilase 1/deficiência , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células-Tronco Mesenquimais/enzimologia , Miócitos Cardíacos/enzimologia , Neovascularização Fisiológica , Comunicação Parácrina , Proteínas Angiogênicas/metabolismo , Diferenciação Celular , Linhagem da Célula , Movimento Celular , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Meios de Cultivo Condicionados/metabolismo , Citocinas/metabolismo , Repressão Enzimática , Fator 2 de Crescimento de Fibroblastos/metabolismo , Coração/metabolismo , Histona Desacetilase 1/genética , Humanos , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Transdução de Sinais , Fatores de Tempo , Transdução Genética , Transfecção
8.
J Am Coll Cardiol ; 69(14): 1824-1838, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28385312

RESUMO

BACKGROUND: The authors previously reported that the c-kit-positive (c-kitPOS) cells isolated from slowly adhering (SA) but not from rapidly adhering (RA) fractions of cardiac mesenchymal cells (CMCs) are effective in preserving left ventricular (LV) function after myocardial infarction (MI). OBJECTIVES: This study evaluated whether adherence to plastic alone, without c-kit sorting, was sufficient to isolate reparative CMCs. METHODS: RA and SA CMCs were isolated from mouse hearts, expanded in vitro, characterized, and evaluated for therapeutic efficacy in mice subjected to MI. RESULTS: Morphological and phenotypic analysis revealed that murine RA and SA CMCs are indistinguishable; nevertheless, transcriptome analysis showed that they possess fundamentally different gene expression profiles related to factors that regulate post-MI LV remodeling and repair. A similar population of SA CMCs was isolated from porcine endomyocardial biopsy samples. In mice given CMCs 2 days after MI, LV ejection fraction 28 days later was significantly increased in the SA CMC group (31.2 ± 1.0% vs. 24.7 ± 2.2% in vehicle-treated mice; p < 0.05) but not in the RA CMC group (24.1 ± 1.2%). Histological analysis showed reduced collagen deposition in the noninfarcted region in mice given SA CMCs (7.6 ± 1.5% vs. 14.5 ± 2.8% in vehicle-treated mice; p < 0.05) but not RA CMCs (11.7 ± 1.7%), which was associated with reduced infiltration of inflammatory cells (14.1 ± 1.6% vs. 21.3 ± 1.5% of total cells in vehicle and 19.3 ± 1.8% in RA CMCs; p < 0.05). Engraftment of SA CMCs was negligible, which implies a paracrine mechanism of action. CONCLUSIONS: We identified a novel population of c-kit-negative reparative cardiac cells (SA CMCs) that can be isolated with a simple method based on adherence to plastic. SA CMCs exhibited robust reparative properties and offered numerous advantages, appearing to be more suitable than c-kitPOS cardiac progenitor cells for widespread clinical therapeutic application.


Assuntos
Adesão Celular , Separação Celular/métodos , Células-Tronco Mesenquimais/metabolismo , Miocárdio/citologia , Animais , Células Cultivadas , Perfilação da Expressão Gênica , Camundongos , Proteínas Proto-Oncogênicas c-kit/metabolismo , Regeneração , Suínos
9.
PLoS One ; 12(3): e0174242, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28355297

RESUMO

Although transplantation of c-kit+ cardiac progenitor cells (CPCs) significantly alleviates post-myocardial infarction left ventricular dysfunction, generation of cardiomyocytes by exogenous CPCs in the recipient heart has often been limited. Inducing robust differentiation would be necessary for improving the efficacy of the regenerative cardiac cell therapy. We assessed the hypothesis that differentiation of human c-kit+ CPCs can be enhanced by priming them with cardiac transcription factors (TFs). We introduced five different TFs (Gata4, MEF2C, NKX2.5, TBX5, and BAF60C) into CPCs, either alone or in combination, and then examined the expression of marker genes associated with the major cardiac cell types using quantitative RT-PCR. When introduced individually, Gata4 and TBX5 induced a subset of myocyte markers. Moreover, Gata4 alone significantly induced smooth muscle cell and fibroblast markers. Interestingly, these gene expression changes brought by Gata4 were also accompanied by morphological changes. In contrast, MEF2C and NKX2.5 were largely ineffective in initiating cardiac gene expression in CPCs. Surprisingly, introduction of multiple TFs in different combinations mostly failed to act synergistically. Likewise, addition of BAF60C to Gata4 and/or TBX5 did not further potentiate their effects on cardiac gene expression. Based on our results, it appears that GATA4 is able to potentiate gene expression programs associated with multiple cardiovascular lineages in CPCs, suggesting that GATA4 may be effective in priming CPCs for enhanced differentiation in the setting of stem cell therapy.


Assuntos
Regulação da Expressão Gênica , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Células-Tronco/metabolismo , Transcrição Gênica , Biomarcadores/metabolismo , Diferenciação Celular , Proteínas Cromossômicas não Histona , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Perfilação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Átrios do Coração/citologia , Átrios do Coração/metabolismo , Átrios do Coração/cirurgia , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Miócitos Cardíacos/citologia , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-kit/metabolismo , Células-Tronco/citologia , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transdução Genética
10.
Stem Cell Rev Rep ; 13(1): 92-103, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27752990

RESUMO

Nitric oxide (NO) is a gaseous free radical molecule involved in several biological processes related to inflammation, tissue damage, and infections. Based on reports that NO inhibits migration of granulocytes and monocytes, we became interested in the role of inducible NO synthetase (iNOS) in pharmacological mobilization of hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood (PB). To address the role of NO in HSPC trafficking, we upregulated or downregulated iNOS expression in hematopoietic cell lines. Next, we performed mobilization studies in iNOS-/- mice and evaluated engraftment of iNOS-/- HSPCs in wild type (control) animals. Our results indicate that iNOS is a novel negative regulator of hematopoietic cell migration and prevents egress of HSPCs into PB during mobilization. At the molecular level, downregulation of iNOS resulted in downregulation of heme oxygenase 1 (HO-1), and, conversely, upregulation of iNOS enhanced HO-1 activity. Since HO-1 is a negative regulator of cell migration, the inhibitory effects of iNOS identified by us can be at least partially explained by its enhancing the HO-1 level in BM cells.


Assuntos
Movimento Celular/genética , Regulação Enzimológica da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Animais , Western Blotting , Células da Medula Óssea/metabolismo , Adesão Celular/genética , Linhagem Celular Tumoral , Células Cultivadas , Quimiotaxia/genética , Feminino , Mobilização de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/citologia , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Células K562 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Stem Cells ; 34(12): 2916-2929, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27501845

RESUMO

Histone deacetylase (HDAC) regulation is an essential process in myogenic differentiation. Inhibitors targeting the activity of specific HDAC family members have been shown to enhance the cardiogenic differentiation capacity of discrete progenitor cell types; a key property of donor cell populations contributing to their afforded benefits in cardiac cell therapy applications. The influence of HDAC inhibition on cardiac-derived mesenchymal stromal cell (CMC) transdifferentiation or the role of specific HDAC family members in dictating cardiovascular cell lineage specification has not been investigated. In the current study, the consequences of HDAC inhibition on patient-derived CMC proliferation, cardiogenic program activation, and cardiovascular differentiation/cell lineage specification were investigated using pharmacologic and genetic targeting approaches. Here, CMCs exposed to the pan-HDAC inhibitor sodium butyrate exhibited induction of a cardiogenic transcriptional program and heightened expression of myocyte and endothelial lineage-specific markers when coaxed to differentiate in vitro. Further, shRNA knockdown screens revealed CMCs depleted of HDAC1 to promote the induction of a cardiogenic transcriptional program characterized by enhanced expression of cardiomyogenic- and vasculogenic-specific markers, a finding which depended on and correlated with enhanced acetylation and stabilization of p53. Cardiogenic gene activation and elevated p53 expression levels observed in HDAC1-depleted CMCs were associated with improved aptitude to assume a cardiomyogenic/vasculogenic cell-like fate in vitro. These results suggest that HDAC1 depletion-induced p53 expression alters CMC cell fate decisions and identify HDAC1 as a potential exploitable target to facilitate CMC-mediated myocardial repair in ischemic cardiomyopathy. Stem Cells 2016;34:2916-2929.


Assuntos
Epigênese Genética , Histona Desacetilase 1/metabolismo , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/metabolismo , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Biomarcadores/metabolismo , Ácido Butírico/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células HEK293 , Inibidores de Histona Desacetilases/farmacologia , Histonas/metabolismo , Humanos , Imunofenotipagem , Células-Tronco Mesenquimais/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Transcrição Gênica/efeitos dos fármacos
13.
Cell Transplant ; 25(7): 1265-76, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27412411

RESUMO

Heme oxygenase 1 (HO-1) is an inducible stress-response enzyme that not only catalyzes the degradation of heme (e.g., released from erythrocytes) but also has an important function in various physiological and pathophysiological states associated with cellular stress, such as ischemic/reperfusion injury. HO-1 has a well-documented anti-inflammatory potential, and HO-1 has been reported to have a negative effect on adhesion and migration of neutrophils in acute inflammation in a model of peritonitis. This finding is supported by our recent observation that hematopoietic stem progenitor cells (HSPCs) from HO-1 KO mice are easy mobilizers, since they respond better to peripheral blood chemotactic gradients than wild-type littermates. Based on these findings, we hypothesized that transient inhibition of HO-1 by nontoxic small-molecule inhibitors would enhance migration of HSPCs in response to bone marrow chemoattractants and thereby facilitate their homing. To directly address this issue, we generated several human hematopoietic cell lines in which HO-1 was upregulated or downregulated. We also exposed murine and human BM-derived cells to small-molecule activators and inhibitors of HO-1. Our results indicate that HO-1 is an inhibitor of hematopoietic cell migration in response to crucial BM homing chemoattractants such as stromal-derived factor 1 (SDF-1) and sphingosine-1-phosphate (S1P). Most importantly, our in vitro and in vivo animal experiments demonstrate for the first time that transiently inhibiting HO-1 activity in HSPCs by small-molecule inhibitors improves HSPC engraftment. We propose that this simple and inexpensive strategy could be employed in the clinical setting to improve engraftment of HSPCs, particularly in those situations in which the number of HSPCs available for transplant is limited (e.g., when transplanting umbilical cord blood).


Assuntos
Regulação para Baixo , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/enzimologia , Heme Oxigenase-1/metabolismo , Animais , Contagem de Células Sanguíneas , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quimiocina CXCL12/farmacologia , Quimiotaxia/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Sangue Fetal/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Heme Oxigenase-1/antagonistas & inibidores , Humanos , Lisofosfolipídeos/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esfingosina/análogos & derivados , Esfingosina/farmacologia
14.
PLoS One ; 10(10): e0140798, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26474484

RESUMO

A recent phase I clinical trial (SCIPIO) has shown that autologous c-kit+ cardiac progenitor cells (CPCs) improve cardiac function and quality of life when transplanted into patients with ischemic heart disease. Although c-kit is widely used as a marker of resident CPCs, its role in the regulation of the cellular characteristics of CPCs remains unknown. We hypothesized that c-kit plays a role in the survival, growth, and migration of CPCs. To test this hypothesis, human CPCs were grown under stress conditions in the presence or absence of SCF, and the effects of SCF-mediated activation of c-kit on CPC survival/growth and migration were measured. SCF treatment led to a significant increase in cell survival and a reduction in cell death under serum depletion conditions. In addition, SCF significantly promoted CPC migration in vitro. Furthermore, the pro-survival and pro-migratory effects of SCF were augmented by c-kit overexpression and abrogated by c-kit inhibition with imatinib. Mechanistically, c-kit activation in CPCs led to activation of the PI3K and the MAPK pathways. With the use of specific inhibitors, we confirmed that the SCF/c-kit-dependent survival and chemotaxis of CPCs are dependent on both pathways. Taken together, our findings suggest that c-kit promotes the survival/growth and migration of human CPCs cultured ex vivo via the activation of PI3K and MAPK pathways. These results imply that the efficiency of CPC homing to the injury site as well as their survival after transplantation may be improved by modulating the activity of c-kit.


Assuntos
Quimiotaxia , Sistema de Sinalização das MAP Quinases , Miocárdio/citologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Células-Tronco/citologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Células-Tronco/farmacologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
15.
Basic Res Cardiol ; 110(5): 503, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26150250

RESUMO

It is commonly thought that the optimal method for intracoronary administration of cells is to stop coronary flow during cell infusion, in order to prolong cell/vascular wall contact, enhance adhesion, and promote extravasation of cells into the interstitial space. However, occlusion of a coronary artery with a balloon involves serious risks of vascular damage and/or dissection, particularly in non-stented segments such as those commonly found in patients with heart failure. It remains unknown whether the use of the stop-flow technique results in improved donor cell retention. Acute myocardial infarction was produced in 14 pigs. One to two months later, pigs received 10 million indium-111 oxyquinoline (oxine)-labeled c-kit(pos) human cardiac stem cells (hCSCs) via intracoronary infusion with (n = 7) or without (n = 7) balloon inflation. Pigs received cyclosporine to prevent acute graft rejection. Animals were euthanized 24 h later and hearts harvested for radioactivity measurements. With the stop-flow technique, the retention of hCSCs at 24 h was 5.41 ± 0.80 % of the injected dose (n = 7), compared with 4.87 ± 0.62 % without coronary occlusion (n = 7), (P = 0.60). When cells are delivered intracoronarily in a clinically relevant porcine model of chronic ischemic cardiomyopathy, the use of the stop-flow technique does not result in greater myocardial cell retention at 24 h compared with non-occlusive infusion. These results have practical implications for the design of cell therapy trials. Our observations suggest that the increased risk of complications secondary to coronary manipulation and occlusion is not warranted.


Assuntos
Isquemia Miocárdica/cirurgia , Miócitos Cardíacos/transplante , Transplante de Células-Tronco/métodos , Animais , Separação Celular , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Humanos , Proteínas Proto-Oncogênicas c-kit , Sus scrofa
16.
Front Cell Dev Biol ; 3: 15, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25806369

RESUMO

Developmental reprogramming techniques have been used to generate induced pluripotent stem (iPS) cells from both normal and malignant cells. The derivation of iPS cells from cancer has the potential to provide a unique scientific tool to overcome challenges associated with the establishment of cell lines from primary patient samples and a readily expandable source of cells that may be used to model the initial disease. In the current study we developmentally reprogrammed a metastatic Ewing sarcoma (EWS) cell line to a meta-stable embryonic stem (ES)-like state sharing molecular and phenotypic features with previously established ES and iPS cell lines. EWS-iPS cells exhibited a pronounced drug resistant phenotype despite persistent expression of the oncogenic EWS-FLI1 fusion transcript. This included resistance to compounds that specifically target downstream effector pathways of EWS-FLI1, such as MAPK/ERK and PI3K/AKT, which play an important role in EWS pathogenesis. EWS-iPS cells displayed tumor initiation abilities in vivo and formed tumors exhibiting characteristic Ewing histopathology. In parallel, EWS-iPS cells re-differentiated in vitro recovered sensitivity to molecularly targeted chemotherapeutic agents, which reiterated pathophysiological features of the cells from which they were derived. These data suggest that EWS-iPS cells may provide an expandable disease model that could be used to investigate processes modulating oncogenesis, metastasis, and chemotherapeutic resistance in EWS.

17.
Expert Opin Biol Ther ; 14(9): 1229-32, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24897618

RESUMO

Decrements in ventricular function due to the permanent loss of contractile tissue remain problematic in patients with ischemic cardiomyopathy. For this reason, cell replacement therapy has received much popularity in recent years. Bone marrow is an abundant and accessible source of stem cells with regenerative potential. However, ischemic heart disease clinical trials based on bone marrow-derived stem cell (BMC) infusion have yielded discrepant results and marginal therapeutic benefits, making this modality's future uncertain. Further investigation of molecular and cellular characteristics critical for therapeutic efficacy and defining the mechanism(s) of BMC-mediated cardiac repair will be paramount for harnessing their full therapeutic potential.


Assuntos
Transplante de Medula Óssea , Cardiomiopatias/terapia , Isquemia Miocárdica/terapia , Células da Medula Óssea/fisiologia , Procedimentos Cirúrgicos Cardíacos , Humanos , Miócitos Cardíacos/fisiologia
18.
Biochem Biophys Res Commun ; 437(1): 29-34, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23792098

RESUMO

Shwachman Diamond syndrome (SDS) is an inherited bone marrow failure syndrome typically characterized by neutropenia, exocrine pancreas dysfunction, metaphyseal chondrodysplasia, and predisposition to myelodysplastic syndrome and leukemia. SBDS, the gene affected in most cases of SDS, encodes a protein known to influence many cellular processes including ribosome biogenesis, mitotic spindle assembly, chemotaxis, and the regulation of reactive oxygen species production. The best characterized role for the SBDS protein is in the production of functional 60S ribosomal subunits. Given that a reduction in functional 60S subunits could impact on the translational output of cells depleted of SBDS we analyzed protein synthesis in yeast cells lacking SDO1, the ortholog of SBDS. Cells lacking SDO1 selectively increased the synthesis of POR1, the ortholog of mammalian VDAC1 a major anion channel of the mitochondrial outer membrane. Further studies revealed the cells lacking SDO1 were compromised in growth on non-fermentable carbon sources suggesting mitochondrial function was impaired. These observations prompted us to examine mitochondrial function in human cells where SBDS expression was reduced. Our studies indicate that reduced expression of SBDS decreases mitochondrial membrane potential and oxygen consumption and increases the production of reactive oxygen species. These studies indicate that mitochondrial function is also perturbed in cells expressing reduced amounts of SBDS and indicate that disruption of mitochondrial function may also contribute to SDS pathophysiology.


Assuntos
Doenças da Medula Óssea/metabolismo , Doenças da Medula Óssea/patologia , Insuficiência Pancreática Exócrina/metabolismo , Insuficiência Pancreática Exócrina/patologia , Lipomatose/metabolismo , Lipomatose/patologia , Mitocôndrias/metabolismo , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo , Carbono/farmacologia , Linhagem Celular , Fermentação/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Proteínas/metabolismo , Proteômica , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo , Síndrome de Shwachman-Diamond
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA