Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(2): e0242121, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35377225

RESUMO

E-cigarettes (e-cigs) have drastically increased in popularity during the last decade, especially among teenagers. While recent studies have started to explore the effect of e-cigs in the oral cavity, little is known about their effects on the oral microbiota and how they could affect oral health and potentially lead to disease, including periodontitis and head and neck cancers. To explore the impact of e-cigs on oral bacteria, we selected members of the genus Streptococcus, which are abundant in the oral cavity. We exposed the commensals Streptococcus sanguinis and Streptococcus gordonii and the opportunistic pathogen Streptococcus mutans, best known for causing dental caries, to e-liquids and e-cig aerosols with and without nicotine and with and without menthol flavoring and measured changes in growth patterns and biofilm formation. Our results demonstrate that e-cig aerosols hindered the growth of S. sanguinis and S. gordonii, while they did not affect the growth of S. mutans. We also show that e-cig aerosols significantly increased biofilm formation by S. mutans but did not affect the biofilm formation of the two commensals. We found that S. mutans exhibits higher hydrophobicity and coaggregation abilities along with higher attachment to OKF6 cells than S. sanguinis and S. gordonii. Therefore, our data suggest that e-cig aerosols have the potential to dysregulate oral bacterial homeostasis by suppressing the growth of commensals while enhancing the biofilm formation of the opportunistic pathogen S. mutans. This study highlights the importance of understanding the consequences of e-cig aerosol exposure on selected commensals and pathogenic species. Future studies modeling more complex communities will provide more insight into how e-cig aerosols and vaping affect the oral microbiota. IMPORTANCE Our study shows that e-cigarette aerosol exposure of selected bacteria known to be residents of the oral cavity hinders the growth of two streptococcal commensals while enhancing biofilm formation, hydrophobicity, and attachment for the pathogen S. mutans. These results indicate that e-cigarette vaping could open a niche for opportunistic bacteria such as S. mutans to colonize the oral cavity and affect oral health.


Assuntos
Cárie Dentária , Sistemas Eletrônicos de Liberação de Nicotina , Adolescente , Aerossóis , Biofilmes , Humanos , Streptococcus gordonii/fisiologia , Streptococcus mutans/fisiologia
2.
Cells ; 11(5)2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269394

RESUMO

E-cigarette (e-cig) vapor has been shown to play a pathological role in oral health and alter the oral microbiota, providing growth advantages for opportunistic pathogens. Enrichment of Staphylococcus aureus, a commensal resident in the oral cavity, correlates with the progression of periodontal disease, suggesting a role as an opportunistic pathogen. Environmental conditions, such as cigarette smoke, are known to increase S. aureus virulence, yet the role of S. aureus in periodontitis and oral preneoplasia is unknown. We exposed oral epithelial cells to e-cig aerosols and showed a dose-dependent cell viability reduction, regardless of nicotine content, in a possible attempt to repair DNA damage, as measured by pH2AX. S. aureus attachment to oral epithelial cells and bacterial biofilm formation were enhanced upon e-cig exposure, indicating an increased capacity for oral colonization. Mechanistically, e-cig aerosol exposure resulted in an immunosuppression, as determined by a reduction in IL8, IL6, and IL1ß secretion by oral epithelial cells during co-culture with S. aureus. Consistent with this, e-cig vape reduced the oral epithelial cell clearance of S. aureus. Furthermore, we observed an increased expression of the inflammatory regulator COX2. This work suggests that e-cigs promote S. aureus colonization and modulate the oral inflammatory response, possibly promoting oral periodontitis and preneoplasia.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Staphylococcus aureus Resistente à Meticilina , Periodontite , Aerossóis , Humanos , Imunidade , Pulmão/patologia , Periodontite/metabolismo , Staphylococcus aureus
3.
Annu Rev Biochem ; 76: 101-24, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17291191

RESUMO

The tmRNA system performs translational surveillance and ribosome rescue in all eubacteria and some eukaryotic organelles. This system intervenes when ribosomes read to the 3' end of an mRNA or pause at internal codons with subsequent mRNA cleavage. A complex of alanyl-tmRNA (which functions as a tRNA and mRNA), SmpB protein, and EF-TucGTP binds stalled ribosomes, the nascent polypeptide is transferred to the alanine on tmRNA, and translation switches from the original message to a short tmRNA open reading frame (ORF) that encodes a degradation tag. Translation of the ORF and normal termination releases the tagged polypeptide for degradation and permits disassembly and recycling of ribosomal subunits for new rounds of protein synthesis. Structural and biochemical studies suggest mechanisms that keep tmRNA from interrupting normal translation and target ribosomes stalled with very short 3' mRNA extensions. Additional biological roles of tmRNA include stress management and the regulation of transcriptional circuits.


Assuntos
Biossíntese de Proteínas , RNA Bacteriano/metabolismo , Ribossomos/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Fases de Leitura Aberta , Fator Tu de Elongação de Peptídeos/metabolismo , Conformação Proteica , Estabilidade de RNA , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/metabolismo
4.
Mol Microbiol ; 58(2): 456-66, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16194232

RESUMO

When protein synthesis stalls in bacteria, tmRNA acts first as a surrogate tRNA and then as an mRNA in a series of reactions that append a peptide tag to the nascent polypeptide and 'rescue' the ribosome. The peptide tag encoded by wild-type tmRNA promotes rapid degradation of rescued proteins. Using a mutant tmRNA that encodes a tag that does not lead to degradation, we demonstrate that the synthesis of approximately 0.4% of all proteins terminates with tagging and ribosome rescue during normal exponential growth of Escherichia coli. The frequency of tagging was not significantly increased in cells expressing very high levels of tmRNA and its binding protein SmpB, suggesting that recognition of 'stalled' ribosomes does not involve competition between tmRNA and other translation factors for A-sites that are unoccupied transiently during protein synthesis. When the demand for ribosome rescue was increased artificially by overproduction of a non-stop mRNA, tmRNA levels did not increase but tmRNA-mediated tagging increased substantially. Thus, the ribosome-rescue system usually operates well below capacity.


Assuntos
Escherichia coli/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Ribossomos/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genes Reporter , Biossíntese de Proteínas
5.
J Virol ; 76(20): 10245-55, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12239300

RESUMO

Bacteriophage with linear, double-stranded DNA genomes package DNA into preassembled protein shells called procapsids. Located at one vertex in the procapsid is a portal complex composed of a ring of 12 subunits of portal protein. The portal complex serves as a docking site for the DNA packaging enzymes, a conduit for the passage of DNA, and a binding site for the phage tail. An excess of the P22 portal protein alters the assembly pathway of the procapsid, giving rise to defective procapsid-like particles and aberrant heads. In the present study, we report the isolation of escape mutant phage that are able to replicate more efficiently than wild-type phage in the presence of excess portal protein. The escape mutations all mapped to the same phage genome segment spanning the portal, scaffold, coat, and open reading frame 69 genes. The mutations present in five of the escape mutants were determined by DNA sequencing. Interestingly, each mutant contained the same mutation in the scaffold gene, which changes the glycine at position 287 to glutamate. This mutation alone conferred an escape phenotype, and the heads assembled by phage harboring only this mutation had reduced levels of portal protein and exhibited increased head assembly fidelity in the presence of excess portal protein. Because this mutation resides in a region of scaffold protein necessary for coat protein binding, these findings suggest that the P22 scaffold protein may define the portal vertices in an indirect manner, possibly by regulating the fidelity of coat protein polymerization.


Assuntos
Bacteriófago P22/fisiologia , Proteínas do Capsídeo , Capsídeo/metabolismo , Proteínas Estruturais Virais/metabolismo , Montagem de Vírus , Bacteriófago P22/genética , Bacteriófago P22/metabolismo , Capsídeo/genética , Mapeamento Cromossômico , Evolução Molecular , Ácido Glutâmico/genética , Glicina/genética , Fases de Leitura Aberta , Fenótipo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Salmonella typhimurium/virologia , Proteínas Estruturais Virais/genética , Vírion
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA