Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 31(9): 2169-2186, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31266901

RESUMO

In Arabidopsis (Arabidopsis thaliana) leaves, starch is synthesized during the day and degraded at night to fuel growth and metabolism. Starch is degraded primarily by ß-amylases, liberating maltose, but this activity is preceded by glucan phosphorylation and is accompanied by dephosphorylation. A glucan phosphatase family member, LIKE SEX4 1 (LSF1), binds starch and is required for normal starch degradation, but its exact role is unclear. Here, we show that LSF1 does not dephosphorylate glucans. The recombinant dual specificity phosphatase (DSP) domain of LSF1 had no detectable phosphatase activity. Furthermore, a variant of LSF1 mutated in the catalytic cysteine of the DSP domain complemented the starch-excess phenotype of the lsf1 mutant. By contrast, a variant of LSF1 with mutations in the carbohydrate binding module did not complement lsf1 Thus, glucan binding, but not phosphatase activity, is required for the function of LSF1 in starch degradation. LSF1 interacts with the ß-amylases BAM1 and BAM3, and the BAM1-LSF1 complex shows amylolytic but not glucan phosphatase activity. Nighttime maltose levels are reduced in lsf1, and genetic analysis indicated that the starch-excess phenotype of lsf1 is dependent on bam1 and bam3 We propose that LSF1 binds ß-amylases at the starch granule surface, thereby promoting starch degradation.


Assuntos
Arabidopsis/metabolismo , Metabolismo dos Carboidratos/fisiologia , Fosfatases de Especificidade Dupla/metabolismo , Amido/metabolismo , beta-Amilase/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metabolismo dos Carboidratos/genética , Proteínas de Transporte , Clonagem Molecular , Fosfatases de Especificidade Dupla/genética , Regulação da Expressão Gênica de Plantas , Glucanos/metabolismo , Fosforilação , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes , Alinhamento de Sequência , Nicotiana/genética , Nicotiana/metabolismo , beta-Amilase/genética
2.
Biochem Biophys Res Commun ; 458(4): 739-44, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25666948

RESUMO

Protein phosphatase 2A (PP2A) is a major serine/threonine phosphatase of eukaryotes. PP2A containing the B55 subunit is a key regulator of mitosis and must be inhibited by phosphorylated α-endosulfine (ENSA) or cyclic AMP-regulated 19 kDa phosphoprotein (ARPP-19) to allow passage through mitosis. Exit from mitosis then requires dephosphorylation of ENSA/ARPP-19 to relieve inhibition of PP2A/B55. ENSA/ARPP-19 has been characterized in several vertebrates and budding yeast, but little is known about its presence in plants and the majority of other eukaryotes. Here we show that three isoforms of ENSA/ARPP-19 are present in the Arabidopsis thaliana genome with distinct expression profiles across various plant tissues. The ENSA/ARPP-19 proteins, and in particular their key inhibitory sequence FDSGDY (FDSADW in plants), is remarkably conserved across plants and most eukaryotes suggesting an ancient origin and conserved function to control PP2A activity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Peptídeos/metabolismo , Fosfoproteínas/metabolismo , Proteína Fosfatase 2/metabolismo , Sequência de Aminoácidos , Animais , Arabidopsis/química , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Biologia Computacional , Eucariotos , Regulação da Expressão Gênica de Plantas , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Mitose , Dados de Sequência Molecular , Fosfoproteínas/química , Fosfoproteínas/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Alinhamento de Sequência
3.
FEBS J ; 280(2): 538-48, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22372537

RESUMO

Starch is the major carbohydrate reserve in plants, and is degraded for growth at night. Starch breakdown requires reversible glucan phosphorylation at the granule surface by novel dikinases and phosphatases. The dual-specificity phosphatase starch excess 4 (SEX4) is required for glucan desphosphorylation; however, regulation of the enzymatic activity of SEX4 is not well understood. We show that SEX4 switches between reduced (active) and oxidized (inactive) states, suggesting that SEX4 is redox-regulated. Although only partial reactivation of SEX4 was achieved using artificial reductants (e.g. dithiothreitol), use of numerous chloroplastic thioredoxins recovered activity completely, suggesting that thioredoxins could reduce SEX4 in vivo. Analysis of peptides from oxidized and reduced SEX4 identified a disulfide linkage between the catalytic cysteine at position 198 (Cys198) and the cysteine at position 130 (Cys130) within the phosphatase domain. The position of these cysteines was structurally analogous to that for known redox-regulated dual-specificity phosphatases, suggesting a common mechanism of reversible oxidation amongst these phosphatases. Mutation of Cys130 renders SEX4 more sensitive to oxidative inactivation and less responsive to reductive reactivation. Together, these results provide the first biochemical evidence for a redox-dependent structural switch that regulates SEX4 activity, which represents the first plant phosphatase known to undergo reversible oxidation via disulfide bond formation like its mammalian counterparts.


Assuntos
Proteínas de Arabidopsis/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Glucanos/metabolismo , Amido/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Domínio Catalítico , Cromatografia Líquida , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Dissulfetos/química , Dissulfetos/metabolismo , Ditiotreitol/farmacologia , Fosfatases de Especificidade Dupla/química , Fosfatases de Especificidade Dupla/genética , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Cinética , Espectrometria de Massas , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Nitrofenóis/metabolismo , Compostos Organofosforados/metabolismo , Oxidantes/farmacologia , Oxirredução/efeitos dos fármacos , Fosforilação
4.
BMC Evol Biol ; 10: 196, 2010 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-20576132

RESUMO

BACKGROUND: Phosphorylated phosphatidylinositol (PtdIns) lipids, produced and modified by PtdIns kinases and phosphatases, are critical to the regulation of diverse cellular functions. The myotubularin PtdIns-phosphate phosphatases have been well characterized in yeast and especially animals, where multiple isoforms, both catalytically active and inactive, occur. Myotubularin mutations bring about disruption of cellular membrane trafficking, and in humans, disease. Previous studies have suggested that myotubularins are widely distributed amongst eukaryotes, but key evolutionary questions concerning the origin of different myotubularin isoforms remain unanswered, and little is known about the function of these proteins in most organisms. RESULTS: We have identified 80 myotubularin homologues amidst the completely sequenced genomes of 30 organisms spanning four eukaryotic supergroups. We have mapped domain architecture, and inferred evolutionary histories. We have documented an expansion in the Amoebozoa of a family of inactive myotubularins with a novel domain architecture, which we dub "IMLRK" (inactive myotubularin/LRR/ROCO/kinase). There is an especially large myotubularin gene family in the pathogen Entamoeba histolytica, the majority of them IMLRK proteins. We have analyzed published patterns of gene expression in this organism which indicate that myotubularins may be important to critical life cycle stage transitions and host infection. CONCLUSIONS: This study presents an overall framework of eukaryotic myotubularin gene evolution. Inactive myotubularin homologues with distinct domain architectures appear to have arisen on three separate occasions in different eukaryotic lineages. The large and distinctive set of myotubularin genes found in an important pathogen species suggest that in this organism myotubularins might present important new targets for basic research and perhaps novel therapeutic strategies.


Assuntos
Amebozoários/genética , Evolução Molecular , Filogenia , Proteínas Tirosina Fosfatases não Receptoras/genética , Sequência de Aminoácidos , Animais , Expressão Gênica , Humanos , Dados de Sequência Molecular , Família Multigênica , Fosfatos de Fosfatidilinositol/metabolismo , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Análise de Sequência de DNA
5.
Mol Cell Biol ; 30(6): 1368-81, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20065038

RESUMO

The catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) plays a major role in the repair of DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ). We have previously shown that DNA-PKcs is autophosphorylated in response to ionizing radiation (IR) and that dephosphorylation by a protein phosphatase 2A (PP2A)-like protein phosphatase (PP2A, PP4, or PP6) regulates the protein kinase activity of DNA-PKcs. Here we report that DNA-PKcs interacts with the catalytic subunits of PP6 (PP6c) and PP2A (PP2Ac), as well as with the PP6 regulatory subunits PP6R1, PP6R2, and PP6R3. Consistent with a role in the DNA damage response, silencing of PP6c by small interfering RNA (siRNA) induced sensitivity to IR and delayed release from the G(2)/M checkpoint. Furthermore, siRNA silencing of either PP6c or PP6R1 led to sustained phosphorylation of histone H2AX on serine 139 (gamma-H2AX) after IR. In contrast, silencing of PP6c did not affect the autophosphorylation of DNA-PKcs on serine 2056 or that of the ataxia-telangiectasia mutated (ATM) protein on serine 1981. We propose that a novel function of DNA-PKcs is to recruit PP6 to sites of DNA damage and that PP6 contributes to the dephosphorylation of gamma-H2AX, the dissolution of IR-induced foci, and release from the G(2)/M checkpoint in vivo.


Assuntos
Domínio Catalítico , Proteína Quinase Ativada por DNA/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/metabolismo , Extratos Celulares , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Quinase do Ponto de Checagem 2 , Proteínas Cromossômicas não Histona/metabolismo , Ensaio Cometa , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos da radiação , Proteínas de Ligação a DNA/metabolismo , Fase G2/efeitos da radiação , Inativação Gênica/efeitos da radiação , Células HeLa , Humanos , Mitose/efeitos da radiação , Modelos Biológicos , Fosforilação/efeitos da radiação , Ligação Proteica/efeitos da radiação , Proteínas Serina-Treonina Quinases/metabolismo , Radiação Ionizante , Proteínas Supressoras de Tumor/metabolismo
6.
Plant Physiol ; 146(2): 351-67, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18156295

RESUMO

In addition to the major serine/threonine-specific phosphoprotein phosphatase, Mg(2+)-dependent phosphoprotein phosphatase, and protein tyrosine phosphatase families, there are novel protein phosphatases, including enzymes with aspartic acid-based catalysis and subfamilies of protein tyrosine phosphatases, whose evolutionary history and representation in plants is poorly characterized. We have searched the protein data sets encoded by the well-finished nuclear genomes of the higher plants Arabidopsis (Arabidopsis thaliana) and Oryza sativa, and the latest draft data sets from the tree Populus trichocarpa and the green algae Chlamydomonas reinhardtii and Ostreococcus tauri, for homologs to several classes of novel protein phosphatases. The Arabidopsis proteins, in combination with previously published data, provide a complete inventory of known types of protein phosphatases in this organism. Phylogenetic analysis of these proteins reveals a pattern of evolution where a diverse set of protein phosphatases was present early in the history of eukaryotes, and the division of plant and animal evolution resulted in two distinct sets of protein phosphatases. The green algae occupy an intermediate position, and show similarity to both plants and animals, depending on the protein. Of specific interest are the lack of cell division cycle (CDC) phosphatases CDC25 and CDC14, and the seeming adaptation of CDC14 as a protein interaction domain in higher plants. In addition, there is a dramatic increase in proteins containing RNA polymerase C-terminal domain phosphatase-like catalytic domains in the higher plants. Expression analysis of Arabidopsis phosphatase genes differentially amplified in plants (specifically the C-terminal domain phosphatase-like phosphatases) shows patterns of tissue-specific expression with a statistically significant number of correlated genes encoding putative signal transduction proteins.


Assuntos
Clorófitas/genética , Evolução Molecular , Genoma Humano , Genoma de Planta , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/genética , Clorófitas/enzimologia , Análise por Conglomerados , Regulação da Expressão Gênica , Humanos , Plantas/enzimologia , Plantas/genética
7.
J Biol Chem ; 282(49): 35733-40, 2007 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-17913711

RESUMO

PII is a highly conserved regulatory protein found in organisms across the three domains of life. In cyanobacteria and plants, PII relieves the feedback inhibition of the rate-limiting step in arginine biosynthesis catalyzed by N-acetylglutamate kinase (NAGK). To understand the molecular structural basis of enzyme regulation by PII, we have determined a 2.5-A resolution crystal structure of a complex formed between two homotrimers of PII and a single hexamer of NAGK from Arabidopsis thaliana bound to the metabolites N-acetylglutamate, ADP, ATP, and arginine. In PII, the T-loop and Trp(22) at the start of the alpha1-helix, which are both adjacent to the ATP-binding site of PII, contact two beta-strands as well as the ends of two central helices (alphaE and alphaG) in NAGK, the opposing ends of which form major portions of the ATP and N-acetylglutamate substrate-binding sites. The binding of Mg(2+).ATP to PII stabilizes a conformation of the T-loop that favors interactions with both open and closed conformations of NAGK. Interactions between PII and NAGK appear to limit the degree of opening and closing of the active-site cleft in opposition to a domain-separating inhibitory effect exerted by arginine, thus explaining the stimulatory effect of PII on the kinetics of arginine-inhibited NAGK.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Complexos Multiproteicos/química , Proteínas PII Reguladoras de Nitrogênio/química , Fosfotransferases (Aceptor do Grupo Carboxila)/química , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arginina/biossíntese , Arginina/química , Sítios de Ligação/fisiologia , Cristalografia por Raios X , Cinética , Magnésio/química , Magnésio/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Estrutura Quaternária de Proteína/fisiologia , Estrutura Secundária de Proteína/fisiologia , Estrutura Terciária de Proteína/fisiologia , Relação Estrutura-Atividade
8.
Methods Mol Biol ; 365: 47-59, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17200553

RESUMO

Ataxia-telangiectasia mutated (ATM) is a serine/threonine protein kinase that plays a central role in controlling the cellular response to DNA double-strand breaks caused by ionizing radiation. Ionizing radiation induces the autophosphorylation of ATM on serine 1981; however, the precise mechanisms that regulate ATM autophosphorylation are not fully understood. By treating cells with okadaic acid, a cell-permeable protein phosphatase inhibitor, together with assays to quantify the activity of particular protein phosphatases, we have demonstrated that the autophosphorylation of ATM on serine 1981 is regulated by a protein phosphatase 2A-like activity. Here, we describe the series of experiments that employed protein phosphatase inhibitors to establish that ATM was regulated by a type-2A protein phosphatase.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Inibidores Enzimáticos/farmacologia , Fosfoproteínas Fosfatases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Linhagem Celular Tumoral , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Humanos , Immunoblotting , Imunoprecipitação , Ácido Okadáico/farmacologia , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/fisiologia , Fosforilação/efeitos dos fármacos , Proteína Fosfatase 2
9.
Biochem Biophys Res Commun ; 346(1): 351-7, 2006 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-16756943

RESUMO

Protein kinase A (PKA) plays an important role in the regulation of lipid metabolism in adipocytes. The activity of PKA is known to be modulated by its specific location in the cell, a process mediated by A-kinase anchoring proteins (AKAPs). In order to examine the subcellular localization of PKA in this tissue we performed a search for AKAP proteins in adipocytes. We purified a 120 kDa protein which can bind both the regulatory subunit of PKA as well as the catalytic subunit of protein phosphatase 1 (PP1). This protein was found to be enriched in the lipid droplet fraction of primary adipocytes and was identified as D-AKAP1. This protein may play an important role in the regulation of PKA in adipocytes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/isolamento & purificação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adipócitos/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Ancoragem à Quinase A , Adipócitos/ultraestrutura , Animais , Masculino , Organelas/química , Proteína Fosfatase 1 , Ratos
10.
BMC Bioinformatics ; 6: 6, 2005 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-15644130

RESUMO

BACKGROUND: Cyclic nucleotides are ubiquitous intracellular messengers. Until recently, the roles of cyclic nucleotides in plant cells have proven difficult to uncover. With an understanding of the protein domains which can bind cyclic nucleotides (CNB and GAF domains) we scanned the completed genomes of the higher plants Arabidopsis thaliana (mustard weed) and Oryza sativa (rice) for the effectors of these signalling molecules. RESULTS: Our analysis found that several ion channels and a class of thioesterases constitute the possible cyclic nucleotide binding proteins in plants. Contrary to some reports, we found no biochemical or bioinformatic evidence for a plant cyclic nucleotide regulated protein kinase, suggesting that cyclic nucleotide functions in plants have evolved differently than in mammals. CONCLUSION: This paper provides a molecular framework for the discussion of cyclic nucleotide function in plants, and resolves a longstanding debate about the presence of a cyclic nucleotide dependent kinase in plants.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Transporte/química , Biologia Computacional/métodos , Genes de Plantas , Genoma de Planta , Oryza/genética , Oryza/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Western Blotting , Proteínas de Transporte/metabolismo , AMP Cíclico/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma , Canais Iônicos/química , Dados de Sequência Molecular , Nucleotídeos Cíclicos , Filogenia , Proteínas de Plantas/química , Canais de Potássio/química , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Tioléster Hidrolases/química , Fatores de Transcrição/química
11.
EMBO J ; 23(22): 4451-61, 2004 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-15510216

RESUMO

Ionizing radiation induces autophosphorylation of the ataxia-telangiectasia mutated (ATM) protein kinase on serine 1981; however, the precise mechanisms that regulate ATM activation are not fully understood. Here, we show that the protein phosphatase inhibitor okadaic acid (OA) induces autophosphorylation of ATM on serine 1981 in unirradiated cells at concentrations that inhibit protein phosphatase 2A-like activity in vitro. OA did not induce gamma-H2AX foci, suggesting that it induces ATM autophosphorylation by inactivation of a protein phosphatase rather than by inducing DNA double-strand breaks. In support of this, we show that ATM interacts with the scaffolding (A) subunit of protein phosphatase 2A (PP2A), that the scaffolding and catalytic (C) subunits of PP2A interact with ATM in undamaged cells and that immunoprecipitates of ATM from undamaged cells contain PP2A-like protein phosphatase activity. Moreover, we show that IR induces phosphorylation-dependent dissociation of PP2A from ATM and loss of the associated protein phosphatase activity. We propose that PP2A plays an important role in the regulation of ATM autophosphorylation and activity in vivo.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Fosfoproteínas Fosfatases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ataxia Telangiectasia , Proteínas Mutadas de Ataxia Telangiectasia , Domínio Catalítico , Proteínas de Ciclo Celular/química , Linhagem Celular , Ensaio Cometa , Proteínas de Ligação a DNA/química , Inibidores Enzimáticos/farmacologia , Fibroblastos/efeitos da radiação , Técnica Indireta de Fluorescência para Anticorpo , Corantes Fluorescentes , Deleção de Genes , Genes Dominantes , Proteínas de Fluorescência Verde/metabolismo , Humanos , Hidrazinas , Microscopia Confocal , Modelos Biológicos , Ácido Okadáico/farmacologia , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/efeitos dos fármacos , Fosfoproteínas Fosfatases/genética , Fosforilação , Testes de Precipitina , Proteína Fosfatase 2 , Proteínas Serina-Treonina Quinases/química , Estrutura Terciária de Proteína , Radiação Ionizante , Serina/química , Transdução de Sinais , Proteínas Supressoras de Tumor/química , Técnicas do Sistema de Duplo-Híbrido
12.
Eur J Biochem ; 270(6): 1356-62, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12631294

RESUMO

An activity that inhibited both glutamine synthetase (GS) and nitrate reductase (NR) was highly purified from cauliflower (Brassica oleracea var. botrytis) extracts. The final preparation contained an acyl-CoA oxidase and a second protein of the plant nucleotide pyrophosphatase family. This preparation hydrolysed NADH, ATP and FAD to generate AMP and was inhibited by fluoride, Cu2+, Zn2+ and Ni2+. The purified fraction had no effect on the activity of NR when reduced methylviologen was used as electron donor instead of NADH; and inhibited the oxidation of NADH by both spinach NR and an Escherichia coli extract in a time-dependent manner. The apparent inhibition of GS and NR and the ability of ATP and AMP to relieve the inhibition of NR can therefore be explained by hydrolysis of nucleotide substrates by the nucleotide pyrophosphatase. We have no evidence that the nucleotide pyrophosphatase is a specific physiological regulator of NR and GS, but suggest that nucleotide pyrophosphatase activity may underlie some confusion in the literature about the effects of nucleotides and protein factors on NR and GS in vitro.


Assuntos
Inibidores Enzimáticos/metabolismo , Glutamato-Amônia Ligase/metabolismo , Nitrato Redutases/metabolismo , Proteínas de Plantas/metabolismo , Pirofosfatases/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Bioensaio , Brassica/enzimologia , Inibidores Enzimáticos/isolamento & purificação , Flavina-Adenina Dinucleotídeo/metabolismo , Glutamato-Amônia Ligase/antagonistas & inibidores , Dados de Sequência Molecular , NAD/metabolismo , Nitrato Redutase , Nitrato Redutases/antagonistas & inibidores , Pirofosfatases/isolamento & purificação , Alinhamento de Sequência
13.
Plant J ; 33(2): 353-60, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12535348

RESUMO

Although the signal sensing protein PII is well known to play a central role in bacterial nitrogen metabolism, the structure and function of PII in plants remains only partially understood. Comparative modeling was undertaken based on the high degree of amino acid identity between Escherichia coli and Arabidopsis PII. The mature Arabidopsis PII predicted structure superimposes very well onto the E. coli PII structure (Calpha root mean square deviation < 0.4 A). The model of the highly conserved T-loop suggests a molecular mechanism by which the plant PII may regulate putative post-translational modification in response to metabolite binding. Consistent with the presence of key conserved residues necessary for trimer formation, gel filtration showed the oligomeric structure of Arabidopsis thaliana PII to be a homotrimer. We have demonstrated that Arabidopsis PII binds to the small molecules, ATP, ADP, 2KG, and with lesser affinity to OAA, using isothermal titration calorimetry. We have determined the metabolite dissociation constants and compared these with known physiological concentrations of these metabolites in the plant to identify the Arabidopsis PII effector molecules and their possible roles. We predict that the plant PII is likely continually bound by ATP, and its ligand-bound state only varying with respect to the degree of 2KG binding. Based on our in vitro binding studies, the function of plant PII as a 2KG sensor is suggested.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Nitrogênio/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Arabidopsis/química , Calorimetria , Ligantes , Modelos Moleculares , Proteínas PII Reguladoras de Nitrogênio , Ligação Proteica , Estrutura Quaternária de Proteína , Termodinâmica
14.
Biochemistry ; 41(42): 12706-14, 2002 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-12379113

RESUMO

DNA double-strand breaks are a serious threat to genome stability and cell viability. One of the major pathways for the repair of DNA double-strand breaks in human cells is nonhomologous end-joining. Biochemical and genetic studies have shown that the DNA-dependent protein kinase (DNA-PK), XRCC4, DNA ligase IV, and Artemis are essential components of the nonhomologous end-joining pathway. DNA-PK is composed of a large catalytic subunit, DNA-PKcs, and a heterodimer of Ku70 and Ku80 subunits. Current models predict that the Ku heterodimer binds to ends of double-stranded DNA, then recruits DNA-PKcs to form the active protein kinase complex. XRCC4 and DNA ligase IV are subsequently required for ligation of the DNA ends. Magnesium-ATP and the protein kinase activity of DNA-PKcs are essential for DNA double-strand break repair. However, little is known about the physiological targets of DNA-PK. We have previously shown that DNA-PKcs and Ku undergo autophosphorylation, and that this correlates with loss of protein kinase activity. Here we show, using electron spectroscopic imaging, that DNA-PKcs and Ku interact with multiple DNA molecules to form large protein-DNA complexes that converge at the base of multiple DNA loops. The number of large protein complexes and the amount of DNA associated with them were dramatically reduced under conditions that promote phosphorylation of DNA-PK. Moreover, treatment of autophosphorylated DNA-PK with the protein phosphatase 1 catalytic subunit restored complex formation. We propose that autophosphorylation of DNA-PK plays an important regulatory role in DNA double-strand break repair by regulating the assembly and disassembly of the DNA-PK-DNA complex.


Assuntos
Antígenos Nucleares , Domínio Catalítico , Dano ao DNA , DNA Helicases , Plasmídeos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Proteína Quinase Ativada por DNA , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Ativação Enzimática , Humanos , Aumento da Imagem , Autoantígeno Ku , Substâncias Macromoleculares , Microscopia Eletrônica , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestrutura , Conformação de Ácido Nucleico , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Plasmídeos/química , Plasmídeos/ultraestrutura , Proteínas da Gravidez/antagonistas & inibidores , Proteínas da Gravidez/química , Proteínas da Gravidez/metabolismo , Proteínas da Gravidez/ultraestrutura , Proteína Fosfatase 1 , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/ultraestrutura , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA