Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Lancet Infect Dis ; 16(3): 311-20, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26725450

RESUMO

BACKGROUND: The ongoing Ebola outbreak led to accelerated efforts to test vaccine candidates. On the basis of a request by WHO, we aimed to assess the safety and immunogenicity of the monovalent, recombinant, chimpanzee adenovirus type-3 vector-based Ebola Zaire vaccine (ChAd3-EBO-Z). METHODS: We did this randomised, double-blind, placebo-controlled, dose-finding, phase 1/2a trial at the Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland. Participants (aged 18-65 years) were randomly assigned (2:2:1), via two computer-generated randomisation lists for individuals potentially deployed in endemic areas and those not deployed, to receive a single intramuscular dose of high-dose vaccine (5 × 10(10) viral particles), low-dose vaccine (2·5 × 10(10) viral particles), or placebo. Deployed participants were allocated to only the vaccine groups. Group allocation was concealed from non-deployed participants, investigators, and outcome assessors. The safety evaluation was not masked for potentially deployed participants, who were therefore not included in the safety analysis for comparison between the vaccine doses and placebo, but were pooled with the non-deployed group to compare immunogenicity. The main objectives were safety and immunogenicity of ChAd3-EBO-Z. We did analysis by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT02289027. FINDINGS: Between Oct 24, 2014, and June 22, 2015, we randomly assigned 120 participants, of whom 18 (15%) were potentially deployed and 102 (85%) were non-deployed, to receive high-dose vaccine (n=49), low-dose vaccine (n=51), or placebo (n=20). Participants were followed up for 6 months. No vaccine-related serious adverse events were reported. We recorded local adverse events in 30 (75%) of 40 participants in the high-dose group, 33 (79%) of 42 participants in the low-dose group, and five (25%) of 20 participants in the placebo group. Fatigue or malaise was the most common systemic adverse event, reported in 25 (62%) participants in the high-dose group, 25 (60%) participants in the low-dose group, and five (25%) participants in the placebo group, followed by headache, reported in 23 (57%), 25 (60%), and three (15%) participants, respectively. Fever occurred 24 h after injection in 12 (30%) participants in the high-dose group and 11 (26%) participants in the low-dose group versus one (5%) participant in the placebo group. Geometric mean concentrations of IgG antibodies against Ebola glycoprotein peaked on day 28 at 51 µg/mL (95% CI 41·1-63·3) in the high-dose group, 44·9 µg/mL (25·8-56·3) in the low-dose group, and 5·2 µg/mL (3·5-7·6) in the placebo group, with respective response rates of 96% (95% CI 85·7-99·5), 96% (86·5-99·5), and 5% (0·1-24·9). Geometric mean concentrations decreased by day 180 to 25·5 µg/mL (95% CI 20·6-31·5) in the high-dose group, 22·1 µg/mL (19·3-28·6) in the low-dose group, and 3·2 µg/mL (2·4-4·9) in the placebo group. 28 (57%) participants given high-dose vaccine and 31 (61%) participants given low-dose vaccine developed glycoprotein-specific CD4 cell responses, and 33 (67%) and 35 (69%), respectively, developed CD8 responses. INTERPRETATION: ChAd3-EBO-Z was safe and well tolerated, although mild to moderate systemic adverse events were common. A single dose was immunogenic in almost all vaccine recipients. Antibody responses were still significantly present at 6 months. There was no significant difference between doses for safety and immunogenicity outcomes. This acceptable safety profile provides a reliable basis to proceed with phase 2 and phase 3 efficacy trials in Africa. FUNDING: Swiss State Secretariat for Education, Research and Innovation (SERI), through the EU Horizon 2020 Research and Innovation Programme.


Assuntos
Adenoviridae/classificação , Anticorpos Antivirais/sangue , Vacinas contra Ebola/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Adulto , Relação Dose-Resposta Imunológica , Vacinas contra Ebola/administração & dosagem , Vacinas contra Ebola/efeitos adversos , Ebolavirus/imunologia , Feminino , Febre/induzido quimicamente , Doença pelo Vírus Ebola/virologia , Humanos , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , Militares , Vacinas de DNA/imunologia , Adulto Jovem
2.
Lancet Infect Dis ; 16(1): 31-42, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26546548

RESUMO

BACKGROUND: The 2014 west African Zaire Ebola virus epidemic prompted worldwide partners to accelerate clinical development of replication-defective chimpanzee adenovirus 3 vector vaccine expressing Zaire Ebola virus glycoprotein (ChAd3-EBO-Z). We aimed to investigate the safety, tolerability, and immunogenicity of ChAd3-EBO-Z in Malian and US adults, and assess the effect of boosting of Malians with modified vaccinia Ankara expressing Zaire Ebola virus glycoprotein and other filovirus antigens (MVA-BN-Filo). METHODS: In the phase 1, single-blind, randomised trial of ChAd3-EBO-Z in the USA, we recruited adults aged 18-65 years from the University of Maryland medical community and the Baltimore community. In the phase 1b, open-label and double-blind, dose-escalation trial of ChAd3-EBO-Z in Mali, we recruited adults 18-50 years of age from six hospitals and health centres in Bamako (Mali), some of whom were also eligible for a nested, randomised, double-blind, placebo-controlled trial of MVA-BN-Filo. For randomised segments of the Malian trial and for the US trial, we randomly allocated participants (1:1; block size of six [Malian] or four [US]; ARB produced computer-generated randomisation lists; clinical staff did randomisation) to different single doses of intramuscular immunisation with ChAd3-EBO-Z: Malians received 1 × 10(10) viral particle units (pu), 2·5 × 10(10) pu, 5 × 10(10) pu, or 1 × 10(11) pu; US participants received 1 × 10(10) pu or 1 × 10(11) pu. We randomly allocated Malians in the nested trial (1:1) to receive a single dose of 2 × 10(8) plaque-forming units of MVA-BN-Filo or saline placebo. In the double-blind segments of the Malian trial, investigators, clinical staff, participants, and immunology laboratory staff were masked, but the study pharmacist (MK), vaccine administrator, and study statistician (ARB) were unmasked. In the US trial, investigators were not masked, but participants were. Analyses were per protocol. The primary outcome was safety, measured with occurrence of adverse events for 7 days after vaccination. Both trials are registered with ClinicalTrials.gov, numbers NCT02231866 (US) and NCT02267109 (Malian). FINDINGS: Between Oct 8, 2014, and Feb 16, 2015, we randomly allocated 91 participants in Mali (ten [11%] to 1 × 10(10) pu, 35 [38%] to 2·5 × 10(10) pu, 35 [38%] to 5 × 10(10) pu, and 11 [12%] to 1 × 10(11) pu) and 20 in the USA (ten [50%] to 1 × 10(10) pu and ten [50%] to 1 × 10(11) pu), and boosted 52 Malians with MVA-BN-Filo (27 [52%]) or saline (25 [48%]). We identified no safety concerns with either vaccine: seven (8%) of 91 participants in Mali (five [5%] received 5 × 10(10) and two [2%] received 1 × 10(11) pu) and four (20%) of 20 in the USA (all received 1 × 10(11) pu) given ChAd3-EBO-Z had fever lasting for less than 24 h, and 15 (56%) of 27 Malians boosted with MVA-BN-Filo had injection-site pain or tenderness. INTERPRETATION: 1 × 10(11) pu single-dose ChAd3-EBO-Z could suffice for phase 3 efficacy trials of ring-vaccination containment needing short-term, high-level protection to interrupt transmission. MVA-BN-Filo boosting, although a complex regimen, could confer long-lived protection if needed (eg, for health-care workers). FUNDING: Wellcome Trust, Medical Research Council UK, Department for International Development UK, National Cancer Institute, Frederick National Laboratory for Cancer Research, Federal Funds from National Institute of Allergy and Infectious Diseases.


Assuntos
Vacinas contra Ebola/administração & dosagem , Doença pelo Vírus Ebola/prevenção & controle , Imunização Secundária , Adolescente , Adulto , Idoso , Animais , Antígenos Virais/imunologia , Relação Dose-Resposta Imunológica , Método Duplo-Cego , Feminino , Glicoproteínas/imunologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/virologia , Humanos , Masculino , Mali , Pessoa de Meia-Idade , Método Simples-Cego , Estados Unidos , Adulto Jovem
3.
N Engl J Med ; 374(17): 1647-60, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25830326

RESUMO

BACKGROUND: The replication-competent recombinant vesicular stomatitis virus (rVSV)-based vaccine expressing a Zaire ebolavirus (ZEBOV) glycoprotein was selected for rapid safety and immunogenicity testing before its use in West Africa. METHODS: We performed three open-label, dose-escalation phase 1 trials and one randomized, double-blind, controlled phase 1 trial to assess the safety, side-effect profile, and immunogenicity of rVSV-ZEBOV at various doses in 158 healthy adults in Europe and Africa. All participants were injected with doses of vaccine ranging from 300,000 to 50 million plaque-forming units (PFU) or placebo. RESULTS: No serious vaccine-related adverse events were reported. Mild-to-moderate early-onset reactogenicity was frequent but transient (median, 1 day). Fever was observed in up to 30% of vaccinees. Vaccine viremia was detected within 3 days in 123 of the 130 participants (95%) receiving 3 million PFU or more; rVSV was not detected in saliva or urine. In the second week after injection, arthritis affecting one to four joints developed in 11 of 51 participants (22%) in Geneva, with pain lasting a median of 8 days (interquartile range, 4 to 87); 2 self-limited cases occurred in 60 participants (3%) in Hamburg, Germany, and Kilifi, Kenya. The virus was identified in one synovial-fluid aspirate and in skin vesicles of 2 other vaccinees, showing peripheral viral replication in the second week after immunization. ZEBOV-glycoprotein-specific antibody responses were detected in all the participants, with similar glycoprotein-binding antibody titers but significantly higher neutralizing antibody titers at higher doses. Glycoprotein-binding antibody titers were sustained through 180 days in all participants. CONCLUSIONS: In these studies, rVSV-ZEBOV was reactogenic but immunogenic after a single dose and warrants further evaluation for safety and efficacy. (Funded by the Wellcome Trust and others; ClinicalTrials.gov numbers, NCT02283099, NCT02287480, and NCT02296983; Pan African Clinical Trials Registry number, PACTR201411000919191.).


Assuntos
Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Glicoproteínas de Membrana/imunologia , Proteínas do Envelope Viral/imunologia , Adulto , Anticorpos Antivirais/sangue , Artrite/etiologia , Dermatite/etiologia , Método Duplo-Cego , Vacinas contra Ebola/administração & dosagem , Vacinas contra Ebola/efeitos adversos , Ebolavirus/isolamento & purificação , Exantema/etiologia , Feminino , Doença pelo Vírus Ebola/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes , Vesiculovirus , Viremia , Eliminação de Partículas Virais
4.
BMC Med ; 9: 55, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21569407

RESUMO

The World Health Organization (WHO) recommends that the cost-effectiveness (CE) of introducing new vaccines be considered before such a programme is implemented. However, in low- and middle-income countries (LMICs), it is often challenging to perform and interpret the results of model-based economic appraisals of vaccines that benefit from locally relevant data. As a result, WHO embarked on a series of consultations to assess economic analytical tools to support vaccine introduction decisions for pneumococcal, rotavirus and human papillomavirus vaccines. The objectives of these assessments are to provide decision makers with a menu of existing CE tools for vaccines and their characteristics rather than to endorse the use of a single tool. The outcome will provide policy makers in LMICs with information about the feasibility of applying these models to inform their own decision making. We argue that if models and CE analyses are used to inform decisions, they ought to be critically appraised beforehand, including a transparent evaluation of their structure, assumptions and data sources (in isolation or in comparison to similar tools), so that decision makers can use them while being fully aware of their robustness and limitations.


Assuntos
Infecções por Papillomavirus/epidemiologia , Infecções Pneumocócicas/epidemiologia , Infecções por Rotavirus/epidemiologia , Vacinas contra Rotavirus/economia , Vacinas contra Rotavirus/imunologia , Vacinação/economia , Análise Custo-Benefício/métodos , Análise Custo-Benefício/normas , Estudos de Avaliação como Assunto , Humanos , Modelos Estatísticos , Infecções por Papillomavirus/economia , Infecções por Papillomavirus/prevenção & controle , Infecções Pneumocócicas/economia , Infecções Pneumocócicas/prevenção & controle , Infecções por Rotavirus/economia , Infecções por Rotavirus/prevenção & controle
5.
Nat Med ; 9(6): 729-35, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12766765

RESUMO

In animals, effective immune responses against malignancies and against several infectious pathogens, including malaria, are mediated by T cells. Here we show that a heterologous prime-boost vaccination regime of DNA either intramuscularly or epidermally, followed by intradermal recombinant modified vaccinia virus Ankara (MVA), induces high frequencies of interferon (IFN)-gamma-secreting, antigen-specific T-cell responses in humans to a pre-erythrocytic malaria antigen, thrombospondin-related adhesion protein (TRAP). These responses are five- to tenfold higher than the T-cell responses induced by the DNA vaccine or recombinant MVA vaccine alone, and produce partial protection manifest as delayed parasitemia after sporozoite challenge with a different strain of Plasmodium falciparum. Such heterologous prime-boost immunization approaches may provide a basis for preventative and therapeutic vaccination in humans.


Assuntos
Imunização Secundária , Vacinas Antimaláricas/imunologia , Linfócitos T/imunologia , Vacinas de DNA/imunologia , Vacinas Sintéticas/imunologia , Vaccinia virus/imunologia , Animais , Antígenos de Protozoários/imunologia , Humanos , Esquemas de Imunização , Interferon gama/imunologia , Interferon gama/metabolismo , Ativação Linfocitária , Malária Falciparum/prevenção & controle , Malária Falciparum/terapia , Peptídeos/imunologia , Peptídeos/metabolismo , Plasmídeos , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Linfócitos T/metabolismo , Vaccinia virus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA