Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38894666

RESUMO

Hematopoietic stem cells (HSCs) are the apical cells of the hematopoietic system, giving rise to cells of the blood and lymph lineages. HSCs reside primarily within bone marrow niches that contain matrix and cell-derived signals that help inform stem cell fate. Aspects of the bone marrow microenvironment have been captured in vitro by encapsulating cells within hydrogel matrices that mimic native mechanical and biochemical properties. Hydrogel microparticles, or microgels, are increasingly being used to assemble granular biomaterials for cell culture and noninvasive delivery applications. Here, we report the optimization of a gelatin maleimide hydrogel system to create monodisperse gelatin microgels via a flow-focusing microfluidic process. We report characteristic hydrogel stiffness, stability, and swelling characteristics as well as encapsulation of murine hematopoietic stem and progenitor cells, and mesenchymal stem cells within microgels. Microgels support cell viability, confirming compatibility of the microfluidic encapsulation process with these sensitive bone marrow cell populations. Overall, this work presents a microgel-based gelatin maleimide hydrogel as a foundation for future development of a multicellular artificial bone marrow culture system.

2.
Biomaterials ; 308: 122542, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38547833

RESUMO

Focal adhesions (FAs) are nanoscale complexes containing clustered integrin receptors and intracellular structural and signaling proteins that function as principal sites of mechanotransduction in part via promoting the nuclear translocation and activation of the transcriptional coactivator yes-associated protein (YAP). Knockdown of FA proteins such as focal adhesion kinase (FAK), talin, and vinculin can prevent YAP nuclear localization. However, the mechanism(s) of action remain poorly understood. Herein, we investigated the role of different functional domains in vinculin, talin, and FAK in regulating YAP nuclear localization. Using genetic or pharmacological inhibition of fibroblasts and human mesenchymal stem cells (hMSCs) adhering to deformable substrates, we find that disruption of vinculin-talin binding versus talin-FAK binding reduces YAP nuclear localization and transcriptional activity via different mechanisms. Disruption of vinculin-talin binding or knockdown of talin-1 reduces nuclear size, traction forces, and YAP nuclear localization. In contrast, disruption of the talin binding site on FAK or elimination of FAK catalytic activity did not alter nuclear size yet still prevented YAP nuclear localization and activity. These data support both nuclear tension-dependent and independent models for matrix stiffness-regulated YAP nuclear localization. Our results highlight the importance of vinculin-talin-FAK interactions at FAs of adherent cells, controlling YAP nuclear localization and activity.


Assuntos
Núcleo Celular , Mecanotransdução Celular , Talina , Vinculina , Proteínas de Sinalização YAP , Talina/metabolismo , Vinculina/metabolismo , Humanos , Núcleo Celular/metabolismo , Proteínas de Sinalização YAP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fatores de Transcrição/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Animais , Adesões Focais/metabolismo , Camundongos , Fibroblastos/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Ligação Proteica
3.
Adv Healthc Mater ; 12(26): e2300942, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37235850

RESUMO

Thiol-norbornene photoclickable poly (ethylene glycol) (PEG)-based (PEG-NB) hydrogels are attractive biomaterials for cell encapsulation, drug delivery, and regenerative medicine applications. Although many crosslinking strategies and chemistries have been developed for PEG-NB bulk hydrogels, fabrication approaches of PEG-NB microgels have not been extensively explored. Here, a fabrication strategy for 4-arm amide-linked PEG-NB (PEG-4aNB) microgels using flow-focusing microfluidics for human mesenchymal stem/stromal cell (hMSCs) encapsulation is presented. PEG-4aNB photochemistry allows high-throughput, ultrafast generation, and cost-effective synthesis of monodispersed microgels (diameter 340 ± 18, 380 ± 24, and 420 ± 15 µm, for 6, 8, and 10 wt% of PEG-4aNB, respectively) using an in situ crosslinking methodology in a microfluidic device. PEG-4aNB microgels show in vitro degradability due to the incorporation of a protease-degradable peptide during photocrosslinking and encapsulated cells show excellent viability and metabolic activity for at least 13 days of culture. Furthermore, the secretory profile (i.e., MMP-13, ICAM-1, PD-L1, CXCL9, CCL3/MIP-1, IL-6, IL-12, IL-17E, TNF-α, CCL2/MCP-1) of encapsulated hMSCs shows increased expression in response to IFN-γ stimulation. Collectively, this work shows a versatile and facile approach for the fabrication of protease-degradable PEG-4aNB microgels for cell encapsulation.


Assuntos
Microgéis , Polietilenoglicóis , Humanos , Encapsulamento de Células , Peptídeo Hidrolases , Hidrogéis , Materiais Biocompatíveis , Norbornanos
4.
Mater Sci Eng C Mater Biol Appl ; 120: 111716, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33545868

RESUMO

Human mesenchymal stem cells (hMSCs) are an attractive source for cell therapies because of their multiple beneficial properties, i.e. via immunomodulation and secretory factors. Microfluidics is particularly attractive for cell encapsulation since it provides a rapid and reproducible methodology for microgel generation of controlled size and simultaneous cell encapsulation. Here, we report the fabrication of hMSC-laden microcarriers based on in situ ionotropic gelation of water-soluble chitosan in a microfluidic device using a combination of an antioxidant glycerylphytate (G1Phy) compound and tripolyphosphate (TPP) as ionic crosslinkers (G1Phy:TPP-microgels). These microgels showed homogeneous size distributions providing an average diameter of 104 ± 12 µm, somewhat lower than that of control (127 ± 16 µm, TPP-microgels). The presence of G1Phy in microgels maintained cell viability over time and upregulated paracrine factor secretion under adverse conditions compared to control TPP-microgels. Encapsulated hMSCs in G1Phy:TPP-microgels were delivered to the subcutaneous space of immunocompromised mice via injection, and the delivery process was as simple as the injection of unencapsulated cells. Immediately post-injection, equivalent signal intensities were observed between luciferase-expressing microgel-encapsulated and unencapsulated hMSCs, demonstrating no adverse effects of the microcarrier on initial cell survival. Cell persistence, inferred by bioluminescence signal, decreased exponentially over time showing relatively higher half-life values for G1Phy:TPP-microgels compared to TPP-microgels and unencapsulated cells. In overall, results position the microfluidics generated G1Phy:TPP-microgels as a promising microcarrier for supporting hMSC survival and reparative activities.


Assuntos
Quitosana , Células-Tronco Mesenquimais , Microgéis , Animais , Sobrevivência Celular , Humanos , Camundongos , Microfluídica
5.
Carbohydr Polym ; 241: 116269, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32507162

RESUMO

Chitosan-based membranes are promising systems for guided bone regeneration. In this work, we used glycerylphytate as ionic crosslinker and osteinductor compound for the fabrication of chitosan membranes as supports for human mesenchymal stem cells. Three different glycerylphytate-crosslinked membranes were developed by changing the crosslinker concentration, from 2.5-10 wt-%, respect to chitosan. Physico-chemical characterization in terms of composition, morphology, and thermal behavior was further analyzed. Swelling degree, crosslinking density, and crosslinker release showed a glycerylphytate content-dependent behavior. Glycerylphytate suggested to improve osteointegration ability of chitosan surfaces by the formation of apatite-like aggregates after incubation in body simulated fluid. Stem cells cultured on the membranes increased their viability over time, and the incorporation of glycerylphytate improved osteogenic and osteoinductivity potential of chitosan by increasing calcium deposition and alkaline phosphatase (ALP) activity on cultured stem cells. These results demonstrated a potential application of glycerylphytate-crosslinked chitosan systems for promising bone tissue regeneration.


Assuntos
Regeneração Óssea , Quitosana/química , Reagentes de Ligações Cruzadas/química , Ácido Fítico/análogos & derivados , Ácido Fítico/química , Fosfatase Alcalina/metabolismo , Adesão Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Humanos , Membranas Artificiais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Engenharia Tecidual
6.
Sci Rep ; 9(1): 11491, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391524

RESUMO

Phytic acid (PA) is a natural-occurring antioxidant, which plays an important role in many biological processes. PA is recognized as a potent inhibitor of lipid peroxidation because of its high affinity to multivalent cations, and it can play a role in osteogenic processes. However, its powerful chelating capacity is controversial because it can lead to a severe reduction of mineral availability in the organism. For this reason, compounds with beneficial biological properties of PA, but a modular ion binding capacity, are of high interest. In this work, we report the synthesis and physicochemical characterization of two hydroxylic derivatives of PA, named glycerylphytates (GPhy), through a condensation reaction of PA with glycerol (G). Both derivatives present antioxidant properties, measured by ferrozine/FeCl2 method and chelating activity with calcium ions depending on the content of glyceryl groups incorporated. Besides, the hydroxylic modification not only modulates the ion binding affinity of derivatives but also improves their cytocompatibility in human bone marrow mesenchymal cells (MSCs). Furthermore, GPhy derivatives display osteogenic properties, confirmed by COL1A and ALPL expression depending on composition. These positive features convert GPhy compounds into potent alternatives for those skeletal diseases treatments where PA is tentatively applied.


Assuntos
Antioxidantes/farmacologia , Quelantes/farmacologia , Glicerol/farmacologia , Osteogênese/efeitos dos fármacos , Ácido Fítico/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Antioxidantes/química , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quelantes/química , Colágeno Tipo I/metabolismo , Compostos Ferrosos/metabolismo , Ferrozina/farmacologia , Glicerol/química , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Camundongos , Ácido Fítico/análogos & derivados , Ácido Fítico/química , Cultura Primária de Células , Células RAW 264.7 , Testes de Toxicidade Subaguda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA