Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cachexia Sarcopenia Muscle ; 10(5): 1045-1059, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31273954

RESUMO

BACKGROUND: Cachexia is a paraneoplastic syndrome related with poor prognosis. The tumour micro-environment contributes to systemic inflammation and increased oxidative stress as well as to fibrosis. The aim of the present study was to characterise the inflammatory circulating factors and tumour micro-environment profile, as potentially contributing to tumour fibrosis in cachectic cancer patients. METHODS: 74 patients (weight stable cancer n = 31; cachectic cancer n = 43) diagnosed with colorectal cancer were recruited, and tumour biopsies were collected during surgery. Multiplex assay was performed to study inflammatory cytokines and growth factors. Immunohistochemistry analysis was carried out to study extracellular matrix components. RESULTS: Higher protein expression of inflammatory cytokines and growth factors such as epidermal growth factor, granulocyte-macrophage colony-stimulating factor, interferon-α, and interleukin (IL)-8 was observed in the tumour and serum of cachectic cancer patients in comparison with weight-stable counterparts. Also, IL-8 was positively correlated with weight loss in cachectic patients (P = 0.04; r = 0.627). Immunohistochemistry staining showed intense collagen deposition (P = 0.0006) and increased presence of α-smooth muscle actin (P < 0.0001) in tumours of cachectic cancer patients, characterizing fibrosis. In addition, higher transforming growth factor (TGF)-ß1, TGF-ß2, and TGF-ß3 expression (P = 0.003, P = 0.05, and P = 0.047, respectively) was found in the tumour of cachectic patients, parallel to p38 mitogen-activated protein kinase alteration. Hypoxia-inducible factor-1α mRNA content was significantly increased in the tumour of cachectic patients, when compared with weight-stable group (P = 0.005). CONCLUSIONS: Our results demonstrate TGF-ß pathway activation in the tumour in cachexia, through the (non-canonical) mitogen-activated protein kinase pathway. The results show that during cachexia, intratumoural inflammatory response contributes to the onset of fibrosis. Tumour remodelling, probably by TGF-ß-induced transdifferentiation of fibroblasts to myofibroblasts, induces unbalanced inflammatory cytokine profile, angiogenesis, and elevation of extracellular matrix components (EMC). We speculate that these changes may affect tumour aggressiveness and present consequences in peripheral organs.


Assuntos
Caquexia/etiologia , Caquexia/metabolismo , Neoplasias/complicações , Neoplasias/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Idoso , Biomarcadores , Biópsia , Composição Corporal , Índice de Massa Corporal , Caquexia/patologia , Células Cultivadas , Citocinas/metabolismo , Feminino , Fibroblastos , Fibrose , Expressão Gênica , Humanos , Hipóxia , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Neoplasias/patologia , Estresse Oxidativo , Microambiente Tumoral
2.
Mol Cell Endocrinol ; 447: 116-124, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28238722

RESUMO

Because of the paucity of information regarding metabolic effects of advanced glycation end products (AGEs) on liver, we evaluated effects of AGEs chronic administration in (1) insulin sensitivity; (2) hepatic expression of genes involved in AGEs, glucose and fat metabolism, oxidative stress and inflammation and; (3) hepatic morphology and glycogen content. Rats received intraperitoneally albumin modified (AlbAGE) or not by advanced glycation for 12 weeks. AlbAGE induced whole-body insulin resistance concomitantly with increased hepatic insulin sensitivity, evidenced by activation of AKT, inactivation of GSK3, increased hepatic glycogen content, and decreased expression of gluconeogenesis genes. Additionally there was reduction in hepatic fat content, in expression of lipogenic, pro-inflamatory and pro-oxidative genes and increase in reactive oxygen species and in nuclear expression of NRF2, a transcription factor essential to cytoprotective response. Although considered toxic, AGEs become protective when administered chronically, stimulating AKT signaling, which is involved in cellular defense and insulin sensitivity.


Assuntos
Produtos Finais de Glicação Avançada/farmacologia , Hormese/efeitos dos fármacos , Resistência à Insulina , Fígado/metabolismo , Albuminas/farmacologia , Animais , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Gluconeogênese/efeitos dos fármacos , Gluconeogênese/genética , Produtos Finais de Glicação Avançada/administração & dosagem , Glicogênio/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteína HMGB1/metabolismo , Mediadores da Inflamação/metabolismo , Injeções Intraperitoneais , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Fígado/efeitos dos fármacos , Masculino , Modelos Biológicos , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA