Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35326597

RESUMO

It is known that 8-chloro-adenosine (8-Cl-Ado) is a novel RNA-directed nucleoside analog that targets leukemic stem cells (LSCs). In a phase I clinical trial with 8-Cl-Ado in patients with refractory or relapsed (R/R) AML, we observed encouraging but short-lived clinical responses, likely due to intrinsic mechanisms of LSC resistance. LSC homeostasis depends on amino acid-driven and/or fatty acid oxidation (FAO)-driven oxidative phosphorylation (OXPHOS) for survival. We recently reported that 8-Cl-Ado and the BCL-2-selective inhibitor venetoclax (VEN) synergistically inhibit FAO and OXPHOS in LSCs, thereby suppressing acute myeloid leukemia (AML) growth in vitro and in vivo. Herein, we report that 8-Cl-Ado inhibits ribosomal RNA (rRNA) synthesis through the downregulation of transcription initiation factor TIF-IA that is associated with increasing levels of p53. Paradoxically, 8-Cl-Ado-induced p53 increased FAO and OXPHOS, thereby self-limiting the activity of 8-Cl-Ado on LSCs. Since VEN inhibits amino acid-driven OXPHOS, the addition of VEN significantly enhanced the activity of 8-Cl-Ado by counteracting the self-limiting effect of p53 on FAO and OXPHOS. Overall, our results indicate that VEN and 8-Cl-Ado can cooperate in targeting rRNA synthesis and OXPHOS and in decreasing the survival of the LSC-enriched cell population, suggesting the VEN/8-Cl-Ado regimen as a promising therapeutic approach for patients with R/R AML.

2.
J Invest Dermatol ; 142(3 Pt A): 603-612.e7, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34774537

RESUMO

Cutaneous T cell lymphoma (CTCL) is characterized by a background of chronic inflammation, where malignant CTCL cells escape immune surveillance. To study how microRNAs (miRs) regulate T-cell exhaustion, we performed miR sequencing analysis, qRT-PCR, and in situ hybridization on 45 primary CTCL samples, three healthy skin samples, and CTCL cell lines, identifying miR-155-5p, miR-130b-3p, and miR-21-3p. Moreover, miR-155-5p, miR-130b-3p, and miR-21-3p positively correlated with immune checkpoint gene expression in lesional skin samples and were enriched in the IL-6/Jak/signal transducer and activator of transcription signaling pathway by gene set enrichment analysis. Further gene sequencing analysis showed decreased mRNA expression of the major negative regulators of Jak/signal transducer and activator of transcription signaling: SOCS, PIAS, and PTPN. Transfection of MyLa and HuT78 cells with anti-miR-155-5p, anti‒miR-21-3p, and anti‒miR-130b revealed a considerable increase in SOCS proteins along with a significant decrease in the levels of activated signal transducer and activator of transcription 3 and immune checkpoint surface protein expression as well as decreased cell proliferation. Downregulation of miR-155, miR-130, and miR-21 in CTCL cell lines decreased CTCL cell growth and facilitated CD8+ T-cell-mediated cytotoxic activity, with concordant production of IFN-γ and CD107a expression. Our results describe the mechanisms of miR-induced T-cell exhaustion, which provide a foundation for developing synthetic anti-miRs to therapeutically target the tumor microenvironment in CTCL.


Assuntos
Linfoma Cutâneo de Células T , MicroRNAs , Neoplasias Cutâneas , Antagomirs , Regulação para Baixo , Humanos , Linfoma Cutâneo de Células T/patologia , MicroRNAs/metabolismo , Neoplasias Cutâneas/patologia , Microambiente Tumoral
3.
Int J Biol Sci ; 17(9): 2240-2251, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239352

RESUMO

Leflunomide (Lef) is an agent used in autoimmune disorders that interferes with DNA synthesis. De Novo pyrimidine synthesis is a mechanism of Gemcitabine (Gem) resistance in pancreatic cancer. This study aims to assess the efficacy and changes in the tumor microenvironment of Lef monotherapy and in combination with Gem, in a syngeneic mouse model of pancreatic cancer. Methods: MTS proliferation assays were conducted to assess growth inhibition by Gem (0-20 nM), Lef (0-40 uM) and Gem+Lef in KPC (KrasLSL.G12D/+;p53R172H/+; PdxCretg/+) cells in vitro. An in vivo heterotopic KPC model was used and cohorts were treated with: PBS (control), Gem (75 mg/kg/q3d), Lef (40 mg/kg/d), or Gem+Lef. At d28 post-treatment, tumor burden, proliferation index (Ki67), and vascularity (CD31) were measured. Changes in the frequency of peripheral and intratumoral immune cell subsets were evaluated via FACS. Liquid chromatography-mass spectrometry was used for metabolomics profiling. Results: Lef inhibits KPC cell growth and synergizes with Gem in vitro (P<0.05; Combination Index 0.44 (<1 indicates synergy). In vivo, Lef alone and in combination with Gem delays KPC tumor progression (P<0.001). CTLA-4+T cells are also significantly decreased in tumors treated with Lef, Gem or in combination (Gem+Lef) compared to controls (P<0.05). Combination therapy also decreased the Ki67 and vascularity (P<0.01). Leflunomide inhibits de novo pyrimidine synthesis both in vitro (p<0.0001) and in vivo (p<0.05). Conclusions: In this study, we demonstrated that Gem+Lef inhibits pancreatic cancer growth, decrease T cell exhaustion, vascularity and as proof of principle inhibits de novo pyrimidine synthesis. Further characterization of changes in adaptive immunity are necessary to characterize the mechanism of tumor growth inhibition and facilitate translation to a clinical trial.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Desoxicitidina/farmacologia , Modelos Animais de Doenças , Feminino , Imunocompetência , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Microambiente Tumoral/efeitos dos fármacos , Gencitabina
4.
J Hematol Oncol ; 14(1): 70, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33902674

RESUMO

BACKGROUND: BCL-2 inhibition through venetoclax (VEN) targets acute myeloid leukemia (AML) blast cells and leukemic stem cells (LSCs). Although VEN-containing regimens yield 60-70% clinical response rates, the vast majority of patients inevitably suffer disease relapse, likely because of the persistence of drug-resistant LSCs. We previously reported preclinical activity of the ribonucleoside analog 8-chloro-adenosine (8-Cl-Ado) against AML blast cells and LSCs. Moreover, our ongoing phase I clinical trial of 8-Cl-Ado in patients with refractory/relapsed AML demonstrates encouraging clinical benefit. Of note, LSCs uniquely depend on amino acid-driven and/or fatty acid oxidation (FAO)-driven oxidative phosphorylation (OXPHOS) for survival. VEN inhibits OXPHOS in LSCs, which eventually may escape the antileukemic activity of this drug. FAO is activated in LSCs isolated from patients with relapsed AML. METHODS: Using AML cell lines and LSC-enriched blast cells from pre-treatment AML patients, we evaluated the effects of 8-Cl-Ado, VEN and the 8-Cl-Ado/VEN combination on fatty acid metabolism, glycolysis and OXPHOS using liquid scintillation counting, a Seahorse XF Analyzer and gene set enrichment analysis (GSEA). Western blotting was used to validate results from GSEA. HPLC was used to measure intracellular accumulation of 8-Cl-ATP, the cytotoxic metabolite of 8-Cl-Ado. To quantify drug synergy, we created combination index plots using CompuSyn software. The log-rank Kaplan-Meier survival test was used to compare the survival distributions of the different treatment groups in a xenograft mouse model of AML. RESULTS: We here report that VEN and 8-Cl-Ado synergistically inhibited in vitro growth of AML cells. Furthermore, immunodeficient mice engrafted with MV4-11-Luc AML cells and treated with the combination of VEN plus 8-Cl-Ado had a significantly longer survival than mice treated with either drugs alone (p ≤ 0.006). We show here that 8-Cl-Ado in the LSC-enriched population suppressed FAO by downregulating gene expression of proteins involved in this pathway and significantly inhibited the oxygen consumption rate (OCR), an indicator of OXPHOS. By combining 8-Cl-Ado with VEN, we observed complete inhibition of OCR, suggesting this drug combination cooperates in targeting OXPHOS and the metabolic homeostasis of AML cells. CONCLUSION: Taken together, the results suggest that 8-Cl-Ado enhances the antileukemic activity of VEN and that this combination represents a promising therapeutic regimen for treatment of AML.


Assuntos
2-Cloroadenosina/análogos & derivados , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Sulfonamidas/uso terapêutico , 2-Cloroadenosina/farmacologia , 2-Cloroadenosina/uso terapêutico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Fosforilação Oxidativa , Sulfonamidas/farmacologia
5.
Mol Ther Oncolytics ; 14: 149-158, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31211245

RESUMO

The immunosuppressive agent leflunomide has been used in the treatment of over 300,000 patients with rheumatoid arthritis. Its active metabolite, teriflunomide (Ter), directly inhibits dihydroorotate dehydrogenase (DHODH), an enzyme involved in nucleoside synthesis. We report that Ter not only shows in vitro anti-proliferative activity in pancreatic cancer (PC) cells as a single agent but also synergizes with the chemotherapeutic gemcitabine (Gem) in growth inhibition of PC cells. The growth-inhibitory effects of Ter are not solely caused by inhibition of DHODH. Through a kinase screening approach, we identified the PIM-3 serine-threonine kinase as a novel direct target. Subsequent dose-response kinase assays showed that Ter directly inhibited all three PIM family members, with the highest activities against PIM-3 and -1. The PIM-3 kinase was the PIM family member most often associated with PC oncogenesis and was also the kinase inhibited the most by Ter among more than 600 kinases investigated. Ter in PC cells induced changes in phosphorylation and expression of PIM downstream targets, consistent with the effects achieved by overexpression or downregulation of PIM-3. Finally, pharmacological inhibition of PIM proteins not only diminished PC cell proliferation, but also small-molecule pan-PIM and PIM-3 inhibitors synergized with Gem in growth inhibition of PC cells.

7.
J Cell Physiol ; 234(9): 16295-16303, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30770553

RESUMO

Nucleoside analogs represent the backbone of several distinct chemotherapy regimens for acute myeloid leukemia (AML) and combination with tyrosine kinase inhibitors has improved survival of AML patients, including those harboring the poor-risk FLT3-ITD mutation. Although these compounds are effective in killing proliferating blasts, they lack activity against quiescent leukemia stem cells (LSCs), which contributes to initial treatment refractoriness or subsequent disease relapse. The reagent 8-chloro-adenosine (8-Cl-Ado) is a ribose-containing, RNA-directed nucleoside analog that is incorporated into newly transcribed RNA rather than in DNA, causing inhibition of RNA transcription. In this report, we demonstrate antileukemic activities of 8-Cl-Ado in vitro and in vivo and provide mechanistic insight into the mode of action of 8-Cl-Ado in AML. 8-Cl-Ado markedly induced apoptosis in LSC, with negligible effects on normal stem cells. 8-Cl-Ado was particularly effective against AML cell lines and primary AML blast cells harboring the FLT3-ITD mutation. FLT3-ITD is associated with high expression of miR-155. Furthermore, we demonstrate that 8-Cl-Ado inhibits miR-155 expression levels accompanied by induction of DNA-damage and suppression of cell proliferation, through regulation of miR-155/ErbB3 binding protein 1(Ebp1)/p53/PCNA signaling. Finally, we determined that combined treatment of NSG mice engrafted with FLT3-ITD + MV4-11 AML cells with 8-Cl-Ado and the FLT3 inhibitor AC220 (quizartinib) synergistically enhanced survival, compared with that of mice treated with the individual drugs, suggesting a potentially effective approach for FLT3-ITD AML patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA