Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Cytotherapy ; 25(9): 967-976, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37330732

RESUMO

BACKGROUND/AIMS: Although several studies have demonstrated that mesenchymal stromal cells (MSCs) exhibit beneficial immunomodulatory properties in preclinical models of allergic asthma, effects on airway remodeling have been controversial. Recent evidence has shown that MSCs modify their in vivo immunomodulatory actions depending on the specific inflammatory environment encountered. Accordingly, we assessed whether the therapeutic properties of human mesenchymal stromal cells (hMSCs) could be potentiated by conditioning these cells with serum (hMSC-serum) obtained from patients with asthma and then transplanted in an experimental model of house dust mite (HDM)-induced allergic asthma. METHODS: hMSC and hMSC-serum were administered intratracheally 24 h after the final HDM challenge. hMSC viability and inflammatory mediator production, lung mechanics and histology, bronchoalveolar lavage fluid (BALF) cellularity and biomarker levels, mitochondrial structure and function as well as macrophage polarization and phagocytic capacity were assessed. RESULTS: Serum preconditioning led to: (i) increased hMSC apoptosis and expression of transforming growth factor-ß, interleukin (IL)-10, tumor necrosis factor-α-stimulated gene 6 protein and indoleamine 2,3-dioxygenase-1; (ii) fission and reduction of the intrinsic respiratory capacity of mitochondria; and (iii) polarization of macrophages to M2 phenotype, which may be associated with a greater percentage of hMSCs phagocytosed by macrophages. Compared with mice receiving hMSCs, administration of hMSC-serum led to further reduction of collagen fiber content, eotaxin levels, total and differential cellularity and increased IL-10 levels in BALF, improving lung mechanics. hMSC-serum promoted greater M2 macrophage polarization as well as macrophage phagocytosis, mainly of apoptotic hMSCs. CONCLUSIONS: Serum from patients with asthma led to a greater percentage of hMSCs phagocytosed by macrophages and triggered immunomodulatory responses, resulting in further reductions in both inflammation and remodeling compared with non-preconditioned hMSCs.


Assuntos
Asma , Células-Tronco Mesenquimais , Humanos , Asma/terapia , Pulmão/patologia , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fagocitose
2.
Methods Mol Biol ; 2575: 61-75, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36301471

RESUMO

Chronic kidney disease (CKD) has long been recognized as a state of progressive decline in renal function. Morbidity and mortality are well correlated to the stage of renal function decline. Approximately one million deaths are estimated to be related to CKD worldwide. They are mostly associated with cardiovascular disease as a result of concurrent hypertension, accelerated atherosclerosis, and volume overload. Even with the best current treatment, disease progression is the general rule with a small fraction who reach CKD stage 5 requiring kidney transplantation or dialysis. Transplant patients show substantial reductions in mortality and cardiovascular events, as well as improvements in quality of life. However, the capacity of health systems to deliver kidney transplantation varies worldwide with worse indicators in low-income countries. Consequently, exploring novel and better therapeutic options for CKD is mandatory. Cell-based therapy is a promising strategy for treating CKD in preclinical models, and several clinical trials involving kidney disease exhibit a favorable safety profile. This chapter aims to provide an overview of CKD and the recent results of clinical trials of cell therapy in kidney diseases.


Assuntos
Falência Renal Crônica , Insuficiência Renal Crônica , Humanos , Progressão da Doença , Qualidade de Vida , Diálise Renal , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/complicações , Ciência Translacional Biomédica
3.
Intensive Care Med Exp ; 10(1): 53, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36529842

RESUMO

BACKGROUND: Sedatives and mild hypothermia alone may yield neuroprotective effects in acute ischemic stroke (AIS). However, the impact of this combination is still under investigation. We compared the effects of the combination of mild hypothermia or normothermia with propofol or dexmedetomidine on brain, lung, and kidney in experimental AIS. AIS-induced Wistar rats (n = 30) were randomly assigned, after 24 h, to normothermia or mild hypothermia (32-35 °C) with propofol or dexmedetomidine. Histologic injury score and molecular biomarkers were evaluated not only in brain, but also in lung and kidney. Hemodynamics, ventilatory parameters, and carotid Doppler ultrasonography were analyzed for 60 min. RESULTS: In brain: (1) hypothermia compared to normothermia, regardless of sedative, decreased tumor necrosis factor (TNF)-α expression and histologic injury score; (2) normothermia + dexmedetomidine reduced TNF-α and histologic injury score compared to normothermia + propofol; (3) hypothermia + dexmedetomidine increased zonula occludens-1 expression compared to normothermia + dexmedetomidine. In lungs: (1) hypothermia + propofol compared to normothermia + propofol reduced TNF-α and histologic injury score; (2) hypothermia + dexmedetomidine compared to normothermia + dexmedetomidine reduced histologic injury score. In kidneys: (1) hypothermia + dexmedetomidine compared to normothermia + dexmedetomidine decreased syndecan expression and histologic injury score; (2) hypothermia + dexmedetomidine compared to hypothermia + propofol decreased histologic injury score. CONCLUSIONS: In experimental AIS, the combination of mild hypothermia with dexmedetomidine reduced brain, lung, and kidney damage.

4.
J. venom. anim. toxins incl. trop. dis ; 28: e20220017, 2022. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1386130

RESUMO

The innovation timeline is expensive, risky, competitive, time-consuming, and labor-intensive. In order to overcome such challenges and optimize financial resources, pharmaceutical companies nowadays hire contract development and manufacturing organizations (CDMO) to help them. Based on the experience acquired first from the development of two biopharmaceuticals, the Heterologous Fibrin Sealant and the Apilic Antivenom, and more recently, during their respective clinical trials; the Center for the Study of Venoms and Venomous Animals (CEVAP) proposed to the Ministry of Health the creation of the first Brazilian CDMO. This groundbreaking venture will assist in converting a candidate molecule - from its discovery, proof of concept, product development, up to pilot batch production - into a product. The CDMO impact and legacy will be immense, offering service provision to the public and private sector by producing validated samples for clinical trials and academic training on translational research for those seeking a position in pharmaceutical industries and manufacturing platforms.(AU)


Assuntos
Produtos Biológicos/análise , Proposta de Concorrência/organização & administração , Protocolo de Ensaio Clínico , Brasil , Boas Práticas de Fabricação
5.
Sci Rep ; 9(1): 19604, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31862892

RESUMO

Podocytes are specialized cells with a limited capacity for cell division that do not regenerate in response to injury and loss. Insults that compromise the integrity of podocytes promote proteinuria and progressive renal disease. The aim of this study was to evaluate the potential renoprotective and regenerative effects of mesenchymal stromal cells (mSC) in a severe form of the podocyte injury model induced by intraperitoneal administration of puromycin, aggravated by unilateral nephrectomy. Bone derived mSC were isolated and characterized according to flow cytometry analyses and to their capacity to differentiate into mesenchymal lineages. Wistar rats were divided into three groups: Control, PAN, and PAN+ mSC, consisting of PAN rats treated with 2 × 105 mSC. PAN rats developed heavy proteinuria, hypertension, glomerulosclerosis and significant effacement of the foot process. After 60 days, PAN rats treated with mSC presented a significant amelioration of all these abnormalities. In addition, mSC treatment recovered WT1 expression, improved nephrin, podocin, synaptopodin, podocalyxin, and VEGF expression, and downregulated proinflammatory Th1 cytokines in the kidney with a shift towards regulatory Th2 cytokines. In conclusion, mSC administration induced protection of podocytes in this experimental PAN model, providing new perspectives for the treatment of renal diseases associated with podocyte damage.


Assuntos
Nefropatias/terapia , Células-Tronco Mesenquimais/citologia , Podócitos/citologia , Animais , Diferenciação Celular , Divisão Celular , Regulação para Baixo , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/urina , Hipertensão , Inflamação , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Nefropatias/induzido quimicamente , Masculino , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Nefrectomia , Podócitos/efeitos dos fármacos , Proteinúria/urina , Puromicina Aminonucleosídeo , Ratos , Ratos Wistar , Regeneração , Sialoglicoproteínas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Front Immunol ; 9: 1147, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29881388

RESUMO

Asthma is characterized by chronic lung inflammation and airway hyperresponsiveness. Despite recent advances in the understanding of its pathophysiology, asthma remains a major public health problem and, at present, there are no effective interventions capable of reversing airway remodeling. Mesenchymal stromal cell (MSC)-based therapy mitigates lung inflammation in experimental allergic asthma; however, its ability to reduce airway remodeling is limited. We aimed to investigate whether pre-treatment with eicosapentaenoic acid (EPA) potentiates the therapeutic properties of MSCs in experimental allergic asthma. Seventy-two C57BL/6 mice were used. House dust mite (HDM) extract was intranasally administered to induce severe allergic asthma in mice. Unstimulated or EPA-stimulated MSCs were administered intratracheally 24 h after final HDM challenge. Lung mechanics, histology, protein levels of biomarkers, and cellularity in bronchoalveolar lavage fluid (BALF), thymus, lymph nodes, and bone marrow were analyzed. Furthermore, the effects of EPA on lipid body formation and secretion of resolvin-D1 (RvD1), prostaglandin E2 (PGE2), interleukin (IL)-10, and transforming growth factor (TGF)-ß1 by MSCs were evaluated in vitro. EPA-stimulated MSCs, compared to unstimulated MSCs, yielded greater therapeutic effects by further reducing bronchoconstriction, alveolar collapse, total cell counts (in BALF, bone marrow, and lymph nodes), and collagen fiber content in airways, while increasing IL-10 levels in BALF and M2 macrophage counts in lungs. In conclusion, EPA potentiated MSC-based therapy in experimental allergic asthma, leading to increased secretion of pro-resolution and anti-inflammatory mediators (RvD1, PGE2, IL-10, and TGF-ß), modulation of macrophages toward an anti-inflammatory phenotype, and reduction in the remodeling process. Taken together, these modifications may explain the greater improvement in lung mechanics obtained. This may be a promising novel strategy to potentiate MSCs effects.


Assuntos
Asma/metabolismo , Ácido Eicosapentaenoico/farmacologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Animais , Asma/etiologia , Asma/patologia , Asma/terapia , Biomarcadores , Medula Óssea/imunologia , Medula Óssea/metabolismo , Medula Óssea/patologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/metabolismo , Feminino , Imuno-Histoquímica , Mediadores da Inflamação/metabolismo , Linfonodos/imunologia , Linfonodos/metabolismo , Ativação de Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Muco/metabolismo , Timo/imunologia , Timo/metabolismo
7.
Stem Cell Res Ther ; 8(1): 259, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29126438

RESUMO

BACKGROUND: Administration of bone marrow mononuclear cells (BMMCs) modulates lung inflammation and fibrosis in experimental silicosis. However, no studies have evaluated whether silicosis affects the efficacy of autologous BMMCs treatment. We hypothesized that BMMCs obtained from healthy or silicotic mice may improve lung function, but they might affect the inflammatory and fibrotic processes differently in experimental silicosis. METHODS: C57BL/6 mice were randomly divided into control (C) and silicosis (SIL) groups. Mice in the SIL group were instilled with silica particles intratracheally; the C animals received saline using the same protocol. On day 15, the animals were treated with saline (Sal) or BMMCs (2 × 106 cells) from healthy (BMMC-healthy) and silicotic (BMMC-sil) donors. Lung mechanics were measured, and lungs were collected for histology and molecular biology analysis. RESULTS: BMMCs obtained from healthy and silicotic donors presented similar percentages of cell populations. 99mTc-BMMCs tracking revealed preferential migration of cells to the liver, and only a few GFP+ BMMCs were observed in lung tissue 24 h after treatment, regardless of donor type. Both the SIL-BMMC-healthy and SIL-BMMC-sil groups showed improvement in lung function, a reduction in the fractional area of granuloma, and a decrease in the number of mononuclear and apoptotic cells in lung parenchyma. In addition, the number of F4/80+ macrophages, the levels of interleukin-1 beta and transforming growth factor beta, and collagen fiber content in granuloma were reduced in SIL-BMMC-healthy mice, whereas mRNA expression of MMP-9 and procollagen I and III was reduced in the SIL-BMMC-sil group. CONCLUSIONS: Administration of BMMCs from healthy and silicotic donors reduced lung inflammation and fibrosis, thus improving lung function. In addition, BMMC-healthy exhibited a greater improvement in lung morpho-functional changes in murine model of silicosis.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Animais , Medula Óssea , Feminino , Leucócitos Mononucleares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Silicose
8.
Biophys Rev ; 9(5): 793-803, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28914424

RESUMO

According to the World Health Organization (WHO), hundreds of millions of people of all ages and in all countries suffer from chronic respiratory diseases, with particular negative consequences such as poor health-related quality of life, impaired work productivity, and limitations in the activities of daily living. Chronic obstructive pulmonary disease, asthma, occupational lung diseases (such as silicosis), cystic fibrosis, and pulmonary arterial hypertension are the most common of these diseases, and none of them are curable with current therapies. The advent of nanotechnology holds great therapeutic promise for respiratory conditions, because non-viral vectors are able to overcome the mucus and lung remodeling barriers, increasing pharmacologic and therapeutic potency. It has been demonstrated that the extent of pulmonary nanoparticle uptake depends not only on the physical and chemical features of nanoparticles themselves, but also on the health status of the organism; thus, the huge diversity in nanotechnology could revolutionize medicine, but safety assessment is a challenging task. Within this context, the present review discusses some of the major new perspectives in nanotherapeutics for lung disease and highlights some of the most recent studies in the field.

9.
Stem Cell Res Ther ; 8(1): 151, 2017 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-28646903

RESUMO

BACKGROUND: Asthma is a chronic inflammatory disease that can be difficult to treat due to its complex pathophysiology. Most current drugs focus on controlling the inflammatory process, but are unable to revert the changes of tissue remodeling. Human mesenchymal stromal cells (MSCs) are effective at reducing inflammation and tissue remodeling; nevertheless, no study has evaluated the therapeutic effects of extracellular vesicles (EVs) obtained from human adipose tissue-derived MSCs (AD-MSC) on established airway remodeling in experimental allergic asthma. METHODS: C57BL/6 female mice were sensitized and challenged with ovalbumin (OVA). Control (CTRL) animals received saline solution using the same protocol. One day after the last challenge, each group received saline, 105 human AD-MSCs, or EVs (released by 105 AD-MSCs). Seven days after treatment, animals were anesthetized for lung function assessment and subsequently euthanized. Bronchoalveolar lavage fluid (BALF), lungs, thymus, and mediastinal lymph nodes were harvested for analysis of inflammation. Collagen fiber content of airways and lung parenchyma were also evaluated. RESULTS: In OVA animals, AD-MSCs and EVs acted differently on static lung elastance and on BALF regulatory T cells, CD3+CD4+ T cells, and pro-inflammatory mediators (interleukin [IL]-4, IL-5, IL-13, and eotaxin), but similarly reduced eosinophils in lung tissue, collagen fiber content in airways and lung parenchyma, levels of transforming growth factor-ß in lung tissue, and CD3+CD4+ T cell counts in the thymus. No significant changes were observed in total cell count or percentage of CD3+CD4+ T cells in the mediastinal lymph nodes. CONCLUSIONS: In this immunocompetent mouse model of allergic asthma, human AD-MSCs and EVs effectively reduced eosinophil counts in lung tissue and BALF and modulated airway remodeling, but their effects on T cells differed in lung and thymus. EVs may hold promise for asthma; however, further studies are required to elucidate the different mechanisms of action of AD-MSCs versus their EVs.


Assuntos
Asma , Vesículas Extracelulares , Pulmão , Células-Tronco Mesenquimais/imunologia , Mecânica Respiratória , Tecido Adiposo , Animais , Asma/imunologia , Asma/patologia , Asma/fisiopatologia , Asma/terapia , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/patologia , Vesículas Extracelulares/transplante , Feminino , Xenoenxertos , Humanos , Pulmão/imunologia , Pulmão/patologia , Pulmão/fisiopatologia , Células-Tronco Mesenquimais/patologia , Camundongos
10.
Cell Physiol Biochem ; 41(5): 1736-1752, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28365681

RESUMO

BACKGROUND/AIMS: We investigated the regenerative capacity of intravenous administration of bone marrow-derived mononuclear cells (BMMCs) in a rat model of bilateral renal ischemia/reperfusion (IR) injury and the involvement of inflammatory anti-inflammatory and other biological markers in this process. METHODS: Rats were subjected to 1h bilateral renal pedicle clamping. BMMCs were injected i.v 1h after reperfusion and tracked by 99mTc and GFP+ BMMCs. Twenty-four hours after reperfusion, renal function and histological changes were evaluated. The mRNA (real time PCR) and protein (ELISA and immuno-staining) expression of biological markers were analyzed. RESULTS: Renal function and structure improved after infusion of BMMCs in the IR group (IR-C). Labeled BMMCs were found in the kidneys after therapy. The expression of inflammatory and biological markers (TLR-2, TRL-4, RAGE, IL-17, HMGB-1, KIM-1) were reduced and the expression of anti-inflammatory and antioxidant markers (IL-10, Nrf2, and HO-1) were increased in IR-C animals compared with IR untreated animals (IR-S). The apoptotic index diminished and the proliferation index increased in IR-C compared with IR-S. CONCLUSION: The results contribute to our understanding of the role of different biological players in morphofunctional renal improvement and cytoprotection in a post-ischemic reperfusion kidney injury model subjected to cellular therapy.


Assuntos
Antioxidantes/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Transplante de Medula Óssea , Mediadores da Inflamação/metabolismo , Nefropatias , Traumatismo por Reperfusão , Aloenxertos , Animais , Biomarcadores/metabolismo , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Feminino , Inflamação/metabolismo , Inflamação/patologia , Inflamação/terapia , Nefropatias/metabolismo , Nefropatias/patologia , Nefropatias/terapia , Ratos , Ratos Wistar , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/terapia
11.
Stem Cells Transl Med ; 6(3): 962-969, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28186686

RESUMO

One-way endobronchial valves (EBV) insertion to reduce pulmonary air trapping has been used as therapy for chronic obstructive pulmonary disease (COPD) patients. However, local inflammation may result and can contribute to worsening of clinical status in these patients. We hypothesized that combined EBV insertion and intrabronchial administration of mesenchymal stromal cells (MSCs) would decrease the inflammatory process, thus mitigating EBV complications in severe COPD patients. This initial study sought to investigate the safety of this approach. For this purpose, a phase I, prospective, patient-blinded, randomized, placebo-controlled design was used. Heterogeneous advanced emphysema (Global Initiative for Chronic Lung Disease [GOLD] III or IV) patients randomly received either allogeneic bone marrow-derived MSCs (108 cells, EBV+MSC) or 0.9% saline solution (EBV) (n = 5 per group), bronchoscopically, just before insertion of one-way EBVs. Patients were evaluated 1, 7, 30, and 90 days after therapy. All patients completed the study protocol and 90-day follow-up. MSC delivery did not result in acute administration-related toxicity, serious adverse events, or death. No significant between-group differences were observed in overall number of adverse events, frequency of COPD exacerbations, or worsening of disease. Additionally, there were no significant differences in blood tests, lung function, or radiological outcomes. However, quality-of-life indicators were higher in EBV + MSC compared with EBV. EBV + MSC patients presented decreased levels of circulating C-reactive protein at 30 and 90 days, as well as BODE (Body mass index, airway Obstruction, Dyspnea, and Exercise index) and MMRC (Modified Medical Research Council) scores. Thus, combined use of EBV and MSCs appears to be safe in patients with severe COPD, providing a basis for subsequent investigations using MSCs as concomitant therapy. Stem Cells Translational Medicine 2017;6:962-969.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Enfisema Pulmonar/terapia , Valva Pulmonar/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteína C-Reativa/metabolismo , Feminino , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Pessoa de Meia-Idade , Enfisema Pulmonar/diagnóstico por imagem , Enfisema Pulmonar/fisiopatologia , Qualidade de Vida , Testes de Função Respiratória , Resultado do Tratamento
12.
Bioelectrochemistry ; 111: 83-92, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27243447

RESUMO

Electrochemical therapy (EChT) entails treatment of solid tumors with direct electric current (DC). This work evaluated the specific effects of anodic flow generated by DC on biochemical and metabolic features of the A549 human lung cancer cell line. Apoptosis was evaluated on the basis of caspase-3 activity and mitochondrial transmembrane potential dissipation. Cell morphology was analyzed using transmission electron microscopy, and lipid droplets were studied through morphometric analysis and X-ray qualitative elemental microanalysis. High-resolution respirometry was used to assess mitochondrial respiratory parameters. Results indicated A549 viability decreased in a dose-dependent manner with a prominent drop between 18 and 24h after treatment (p<0.001), together with a two-fold increase in caspase-3 activity. AF-treatment induced a significantly increase (p<0.01) in the cell number with disrupted mitochondrial transmembrane potential. Furthermore, treated cells demonstrated important ultrastructural mitochondria damage and a three-fold increase in the cytoplasmic lipid bodies' number, quantified by morphometrical analyses. Conversely, 24h after treatment, the cells presented a two-fold increase of residual oxygen consumption, accounting for 45.3% of basal oxygen consumption. These results show remarkable alterations promoted by anodic flow on human lung cancer cells which are possibly involved with the antitumoral effects of EChT.


Assuntos
Terapia por Estimulação Elétrica , Gotículas Lipídicas/metabolismo , Mitocôndrias/patologia , Apoptose , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Eletrodos , Humanos , Potencial da Membrana Mitocondrial
13.
Cell Physiol Biochem ; 38(2): 821-35, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26905925

RESUMO

BACKGROUND/AIMS: Exogenous surfactant has been proposed as adjunctive therapy for acute respiratory distress syndrome (ARDS), but it is inactivated by different factors present in the alveolar space. We hypothesized that co-administration of LASSBio596, a molecule with significant anti-inflammatory properties, and exogenous surfactant could reduce lung inflammation, thus enabling the surfactant to reduce edema and improve lung function, in experimental ARDS. METHODS: ARDS was induced by cecal ligation and puncture surgery in BALB/c mice. A sham-operated group was used as control (CTRL). After surgery (6 hours), CTRL and ARDS animals were assigned to receive: (1) sterile saline solution; (2) LASSBio596; (3) exogenous surfactant or (4) LASSBio596 plus exogenous surfactant (n = 22/group). RESULTS: Regardless of exogenous surfactant administration, LASSBio596 improved survival rate and reduced collagen fiber content, total number of cells and neutrophils in PLF and blood, cell apoptosis, protein content in BALF, and urea and creatinine levels. LASSBio596 plus surfactant yielded all of the aforementioned beneficial effects, as well as increased BALF lipid content and reduced surface tension. CONCLUSION: LASSBio596 exhibited major anti-inflammatory and anti-fibrogenic effects in experimental sepsis-induced ARDS. Its association with surfactant may provide further advantages, potentially by reducing surface tension.


Assuntos
Anti-Inflamatórios/uso terapêutico , Produtos Biológicos/uso terapêutico , Pulmão/efeitos dos fármacos , Ácidos Ftálicos/uso terapêutico , Surfactantes Pulmonares/uso terapêutico , Síndrome do Desconforto Respiratório/tratamento farmacológico , Sulfonamidas/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos Endogâmicos BALB C , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/patologia , Tensão Superficial/efeitos dos fármacos
14.
Shock ; 41(3): 222-32, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24430537

RESUMO

Malnutrition is a risk factor for infection, compromising immune response. Glutamine (Gln) protects the lungs and distal organs in well-nourished septic and nonseptic conditions; however, no study to date has analyzed the effects of Gln in the presence of sepsis and malnutrition. In the present work, we tested the hypothesis that early therapy with intravenous Gln prevents lung and distal organ damage in septic malnourished rats. Protein-energy malnutrition was induced in male Wistar rats for 4 weeks. At the end of 4 weeks, malnourished animals were assigned to a sepsis-inducing cecal ligation and puncture group or a sham surgery group. One hour after surgery, animals were given saline (Sal) or L-alanyl-L-glutamine (Gln) intravenously. In addition, a control group (C) was set up with rats fed ad libitum, not submitted to surgery or treatment. Forty-eight hours after surgery, in malnutrition-sham rats, Gln therapy lessened neutrophil lung infiltration and apoptosis in lung and liver. In malnutrition-cecal ligation and puncture rats, Gln therapy yielded (a) reduced static lung elastance, alveolar collapse, inflammation (neutrophil infiltration, interleukin 6), and collagen deposition; (b) repair of types I and II epithelial cells; (c) no significant changes in heat shock protein 70 expression or heat shock factor 1 phosphorylation; (d) a greater number of M1 and M2 macrophages in lung tissue; and (e) less apoptosis in the lung, kidney, small intestine, and liver. In conclusion, early therapy with intravenous Gln reduced inflammation, fibrosis, and apoptosis, minimizing lung and distal organ injury, in septic malnourished rats. These beneficial effects may be associated with macrophage activation in the lung.


Assuntos
Glutamina/administração & dosagem , Lesão Pulmonar/tratamento farmacológico , Desnutrição/tratamento farmacológico , Insuficiência de Múltiplos Órgãos/tratamento farmacológico , Sepse/tratamento farmacológico , Administração Intravenosa , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/sangue , Inflamação/tratamento farmacológico , Inflamação/patologia , Mediadores da Inflamação/sangue , Lesão Pulmonar/sangue , Lesão Pulmonar/etiologia , Lesão Pulmonar/patologia , Masculino , Desnutrição/sangue , Desnutrição/complicações , Desnutrição/patologia , Insuficiência de Múltiplos Órgãos/sangue , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/patologia , Ratos , Ratos Wistar , Sepse/sangue , Sepse/complicações , Sepse/patologia
15.
Respir Physiol Neurobiol ; 189(3): 484-90, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24012992

RESUMO

We compared the effects of oleanolic acid (OA) vs. dexamethasone on lung mechanics and histology, inflammation, and apoptosis in lung and distal organs in experimental sepsis. Seventy-eight BALB/c mice were randomly divided into two groups. Sepsis was induced by cecal ligation and puncture, while the control group underwent sham surgery. 1h after surgery, all animals were further randomized to receive saline (SAL), OA and dexamethasone (DEXA) intraperitoneally. Both OA and DEXA improved lung mechanics and histology, which were associated with fewer lung neutrophils and less cell apoptosis in lung, liver, and kidney than SAL. However, only animals in the DEXA group had lower levels of interleukin (IL)-6 and KC (murine analog of IL-8) in bronchoalveolar lavage fluid than SAL animals. Conversely, OA was associated with lower inducible nitric oxide synthase expression and higher superoxide dismutase than DEXA. In the experimental sepsis model employed herein, OA and DEXA reduced lung damage and distal organ apoptosis through distinct anti-inflammatory mechanisms.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Apoptose/efeitos dos fármacos , Pulmão/patologia , Ácido Oleanólico/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Animais , Catalase/genética , Catalase/metabolismo , Dexametasona/uso terapêutico , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Sepse/complicações , Sepse/tratamento farmacológico , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
16.
Stem Cell Res Ther ; 4(5): 123, 2013 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-24406030

RESUMO

INTRODUCTION: Administration of bone marrow-derived cells produces beneficial effects in experimental extrapulmonary acute respiratory distress syndrome (ARDS). However, there are controversies regarding the effects of timing of cell administration and initial insult severity on inflammatory response. We evaluated the effects of bone marrow-derived mononuclear cells (BMDMC) in two models of extrapulmonary ARDS once lung morphofunctional changes had already been installed. METHODS: BALB/c mice received lipopolysaccharide (LPS) intraperitoneally (5 mg/kg in 0.5 ml saline) or underwent cecal ligation and puncture (CLP). Control mice received saline intraperitoneally (0.5 ml) or underwent sham surgery. At 24 hours, groups were further randomized to receive saline or BMDMC (2 × 10(6)) intravenously. Lung mechanics, histology, and humoral and cellular parameters of lung inflammation and remodeling were analyzed 1, 3 and 7 days after ARDS induction. RESULTS: BMDMC therapy led to improved survival in the CLP group, reduced lung elastance, alveolar collapse, tissue and bronchoalveolar lavage fluid cellularity, collagen fiber content, and interleukin-1ß and increased chemokine (keratinocyte-derived chemokine and monocyte chemotactic protein-1) expression in lung tissue regardless of the experimental ARDS model. Intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 expression in lung tissue increased after cell therapy depending on the insult (LPS or CLP). CONCLUSIONS: BMDMC therapy at day 1 successfully reduced lung inflammation and remodeling, thus contributing to improvement of lung mechanics in both extrapulmonary ARDS models. Nevertheless, the different inflammatory responses induced by LPS and CLP resulted in distinct effects of BMDMC therapy. These data may be useful in the clinical setting, as they suggest that the type of initial insult plays a key role in the outcome of treatment.


Assuntos
Células da Medula Óssea/citologia , Terapia Baseada em Transplante de Células e Tecidos , Mediadores da Inflamação/metabolismo , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocinas/genética , Quimiocinas/metabolismo , Modelos Animais de Doenças , Feminino , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/transplante , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , RNA Mensageiro/metabolismo , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/terapia , Fatores de Tempo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
17.
Cells Tissues Organs ; 192(3): 187-99, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20523034

RESUMO

Cholesterol is a sterol lipid that plays pleiotropic roles in the plasma membrane; it is involved in maintaining membrane fluidity and permeability and the structure of lipid microdomains. Despite its importance, the consequences of membrane cholesterol depletion during cardiac differentiation have not been described. Therefore, we investigated the cellular and molecular mechanisms associated with cholesterol depletion in cultures of chick cardiac cells. We used methyl-beta-cyclodextrin (MCD) to deplete membrane cholesterol and investigate its role in cardiac differentiation by following the expression of several markers including the transcriptional factor Nkx2.5, the myofibrillar protein tropomyosin, the cytoskeletal intermediate filament protein desmin, the caveolar protein caveolin-3, the cadherin/beta-catenin adhesion complex, and the junctional protein connexin 43. Confocal microscopy showed that desmin-positive cells were located more externally in the aggregates in relation to the more internally located caveolin-3-positive cells. Desmin and caveolin-3 were co-localized in filamentous structures in the subsarcolemmal region of well-spread cells outside the aggregates. beta-Catenin was concentrated in regions of cell-cell contact, and tropomyosin in sarcomeric structures. Western blot tests showed that immediately following cholesterol depletion, there was a slight decrease in the expression of caveolin-3 and desmin, and at the same time there was a sharp increase in the expression of cadherin, tropomyosin, Nkx2.5 and connexin 43. Further, we found an increase in the expression of cardiac beta-myosin heavy chain 7, a marker of the cardiac hypertrophic phenotype. These observations suggest that membrane cholesterol plays a significant role in regulating cardiomyocyte differentiation.


Assuntos
Antígenos de Diferenciação/metabolismo , Diferenciação Celular/fisiologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Colesterol/metabolismo , Miócitos Cardíacos/metabolismo , beta-Ciclodextrinas/farmacologia , Animais , Caderinas/metabolismo , Miosinas Cardíacas/metabolismo , Caveolina 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha , Conexina 43/metabolismo , Meios de Cultivo Condicionados/metabolismo , Citoplasma/metabolismo , Desmina/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Cadeias Pesadas de Miosina/metabolismo , Sarcômeros/metabolismo , Fatores de Transcrição/metabolismo , Tropomiosina/metabolismo , beta Catenina/metabolismo
18.
Rev. bras. ter. intensiva ; 21(1): 51-57, jan.-mar. 2009. ilus, tab
Artigo em Português | LILACS | ID: lil-572670

RESUMO

A síndrome do desconforto respiratório agudo é caracterizada por uma reação inflamatória difusa do parênquima pulmonar, podendo ser induzida por um insulto direto ao epitélio alveolar (síndrome do desconforto respiratório agudo pulmonar) ou indireto através do endotélio vascular (síndrome do desconforto respiratório agudo extrapulmonar). Acredita-se que uma terapia eficaz para o tratamento da síndrome do desconforto respiratório agudo deva atenuar a resposta inflamatória e promover adequado reparo da lesão pulmonar. O presente artigo apresenta uma breve revisão acerca do potencial terapêutico das células-tronco na síndrome do desconforto respiratório agudo. Essa revisão bibliográfica baseou-se em uma pesquisa sistemática de artigos experimentais e clínicos sobre terapia celular na síndrome do desconforto respiratório agudo incluídos nas bases de dados MedLine e SciELO nos últimos 10 anos. O transplante de células-tronco promove melhora da lesão inflamatória pulmonar e do conseqüente processo fibrótico, induzindo adequado reparo tecidual. Dentre os mecanismos envolvidos, podemos citar: diferenciação em células do epitélio alveolar e redução na liberação de mediadores inflamatórios e sistêmicos e fatores de crescimento. A terapia com células-tronco derivadas da medula óssea pode vir a ser uma opção eficaz e segura no tratamento da síndrome do desconforto respiratório agudo por acelerar o processo de reparo e atenuar a resposta inflamatória. Entretanto, os mecanismos relacionados à atividade antiinflamatória e antifibrogênica de tais células necessitam ser mais bem elucidados, limitando, assim, o seu uso clínico imediato.


Acute respiratory distress syndrome is characterized by an acute pulmonary inflammatory process induced by the presence of a direct (pulmonary) insult that affects lung parenchyma, or an indirect (extrapulmonary) insult that results from an acute systemic inflammatory response. It is believed that an efficient therapy for the acute respiratory distress syndrome should attenuate inflammatory response and promote adequate repair of the lung injury. This article presents a brief review on the use of stem cells and their potential therapeutic effect on the acute respiratory distress syndrome. This systematic review was based upon clinical and experimental acute respiratory distress syndrome studies included in the MedLine and SciElO database during the last 10 years. Stem cell transplant lead to an improvement in lung injury and fibrotic process by inducing adequate tissue repair. This includes alveolar epithelial cell differentiation,and also reduces pulmonary and systemic inflammatory mediators and secretion of growth factors. Stem cells could be a potential therapy for acute respiratory distress syndrome promoting lung repair and attenuating the inflammatory response. However, mechanisms involving their anti-inflammatory and antifibrinogenic effects require better elucidation, limiting their immediate clinical use in acute respiratory distress syndrome.

19.
Acta cir. bras ; 24(1): 69-74, Jan.-Feb. 2009.
Artigo em Inglês | LILACS | ID: lil-503110

RESUMO

The Brazilian scientific community claimed for a definitive systematization and for comprehensive and realistic national rules, to provide guidance and regulation, instead of sanctions, so that the question of scientific research involving animals could be better contemplated. This is beginning to occur now with Law n.º 11.794, sanctioned by the President of the Republic on November 8, 2008. PURPOSE: To describe the evolution of Brazilian regimentation for scientific use of animals and to analyze Law n.º 11.794. METHODS: The legislation about the use of animals in teaching and in scientific research in Brazil and in Rio de Janeiro State was identified and discussed. RESULTS: Until now, there was no updated general and systematizing rule regarding animal vivisection and experimentation for didactic or scientific purposes. The only specific law dates back to1979 and was not regimented. More recent laws equated the practice of scientific experiments to acts of abuse and mistreatment of animals, when alternative technology was available. Municipal laws that restricted the scientific practice of vivisection and experimentation with animals were created in the cities of Rio de Janeiro and Florianopolis. CONCLUSION: With the claim and collaboration of the scientific community, the sanction of Law n.º 11.794 regarding to the scientific use of animals represented an invaluable advance in spite of the presence of some points that eventually may require another type of treatment. The new Law states that it will be regimented within 180 (one-hundred-and-eighty) days, when some of these points could be better elucidated.


A comunidade científica brasileira clamava por uma norma federal abrangente e realista, mais orientadora e reguladora, e menos sancionadora, na qual a questão do uso científico dos animais pudesse ser mais bem contemplada. Isto agora começa a se materializar, com a Lei n.º 11.794, sancionada pelo Presidente da República no dia 8 de novembro de 2008. OBJETIVO: Relatar a evolução na regulamentação brasileira sobre o uso científico de animais e analisar a Lei n.º 11.794. MÉTODOS: Foi identificada e discutida a evolução na legislação existente no Brasil e em alguns municípios brasileiros acerca da utilização de animais no treinamento e na pesquisa científica, até a sanção da nova Lei. RESULTADOS: Até agora, não existia norma geral sistematizadora atualizada referente à vivissecção e experimentação com animais, nem para fins didáticos, nem científicos. A única lei referente a esse tópico datava de 1979 e não chegou a ser regulamentada. Leis mais recentes equiparavam a prática de experimentos científicos aos atos de abuso e maus tratos de animais, na presença de tecnologia alternativa. Nos municípios do Rio de Janeiro e de Florianópolis foram criadas Leis Municipais que cerceavam a prática científica da vivissecção e da experimentação com animais. CONCLUSÃO: A partir do clamor e da colaboração da comunidade científica nacional, a sanção da Lei n.º 11.794, que trata do uso científico dos animais, representou um avanço inestimável, a despeito da presença de alguns pontos que, eventualmente, merecessem outro tipo de tratamento. A nova Lei menciona que ela deverá ser regulamentada em até 180 (cento e oitenta) dias, quando alguns desses pontos poderão ser mais bem esclarecidos.


Assuntos
Animais , Experimentação Animal/legislação & jurisprudência , Pesquisa Biomédica/legislação & jurisprudência , Ensino/legislação & jurisprudência , Brasil , Pesquisadores , Ensino/métodos , Vivissecção
20.
Braz. arch. biol. technol ; 51(spe): 23-30, Dec. 2008. tab
Artigo em Inglês | LILACS | ID: lil-508850

RESUMO

Stem cells have a multitude of clinical implications in the lung. This article is a critical review that includes clinical and experimental studies of MedLine and SciElo database in the last 10 years, where we highlight the effects of stem cell therapy in acute respiratory distress syndrome or more chronic disorders such as lung fibrosis and emphysema. Although, many studies have shown the beneficial effects of stem cells in lung development, repair and remodeling; some important questions need to be answered to better understand the mechanisms that control cell division and differentiation, therefore enabling the use of cell therapy in human respiratory diseases.


As células-tronco têm uma infinidade de implicações clínicas no pulmão. Este artigo é uma revisão crítica que inclui estudos clínicos e experimentais advindos do banco de dados do MEDLINE e SciElo nos últimos 10 anos, onde foram destacados os efeitos da terapia celular na síndrome do desconforto respiratório agudo ou doenças mais crônicas, como fibrose pulmonar e enfisema. Apesar de muitos estudos demonstrarem os efeitos benéficos das células-tronco no desenvolvimento, reparo e remodelamento pulmonar; algumas questões ainda precisam ser respondidas para um melhor entendimento dos mecanismos que controlam a divisão celular e diferenciação, permitindo o uso da terapia celular nas doenças respiratórias.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA