RESUMO
Angiotensin-(1-9) is a peptide from the noncanonical renin-angiotensin system with anti-hypertrophic effects in cardiomyocytes via an unknown mechanism. In the present study we aimed to elucidate it, basing us initially on previous work from our group and colleagues who proved a relationship between disturbances in mitochondrial morphology and calcium handling, associated with the setting of cardiac hypertrophy. Our first finding was that angiotensin-(1-9) can induce mitochondrial fusion through DRP1 phosphorylation. Secondly, angiotensin-(1-9) blocked mitochondrial fission and intracellular calcium dysregulation in a model of norepinephrine-induced cardiomyocyte hypertrophy, preventing the activation of the calcineurin/NFAT signaling pathway. To further investigate angiotensin-(1-9) anti-hypertrophic mechanism, we performed RNA-seq studies, identifying the upregulation of miR-129 under angiotensin-(1-9) treatment. miR-129 decreased the transcript levels of the protein kinase A inhibitor (PKIA), resulting in the activation of the protein kinase A (PKA) signaling pathway. Finally, we showed that PKA activity is necessary for the effects of angiotensin-(1-9) over mitochondrial dynamics, calcium handling and its anti-hypertrophic effects.
Assuntos
Angiotensina I/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MicroRNAs/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fragmentos de Peptídeos/farmacologia , Transdução de Sinais , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citosol/metabolismo , Dinaminas/metabolismo , Hipertrofia , MicroRNAs/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Miócitos Cardíacos/ultraestrutura , Fatores de Transcrição NFATC/metabolismo , Norepinefrina/farmacologia , Fosforilação/efeitos dos fármacos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacosRESUMO
Mitochondrial damage is implicated as a major contributing factor for a number of noncommunicable chronic diseases such as cardiovascular diseases, cancer, obesity, and insulin resistance/type 2 diabetes. Here, we discuss the role of mitochondria in maintaining cellular and whole-organism homeostasis, the mechanisms that promote mitochondrial dysfunction, and the role of this phenomenon in noncommunicable chronic diseases. We also review the state of the art regarding the preclinical evidence associated with the regulation of mitochondrial function and the development of current mitochondria-targeted therapeutics to treat noncommunicable chronic diseases. Finally, we give an integrated vision of how mitochondrial damage is implicated in these metabolic diseases.
Assuntos
Mitocôndrias/metabolismo , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Doença Crônica , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Humanos , Resistência à Insulina , Doenças Metabólicas/metabolismo , Doenças Metabólicas/fisiopatologia , Mitocôndrias/fisiologia , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Espécies Reativas de Oxigênio , Transdução de Sinais , Resposta a Proteínas não DobradasRESUMO
Vascular smooth muscle cells (VSMC) dedifferentiation from a contractile to a synthetic phenotype contributes to atherosclerosis. Atherosclerotic tissue has a chronic inflammatory component with high levels of tumor necrosis factor-α (TNF-α). VSMC of atheromatous plaques have increased autophagy, a mechanism responsible for protein and intracellular organelle degradation. The aim of this study was to evaluate whether TNF-α induces phenotype switching of VSMCs and whether this effect depends on autophagy. Rat aortic Vascular smooth A7r5 cell line was used as a model to examine the phenotype switching and autophagy. These cells were stimulated with TNF-α 100 ng/mL. Autophagy was determined by measuring LC3-II and p62 protein levels. Autophagy was inhibited using chloroquine and siRNA Beclin1. Cell dedifferentiation was evaluated by measuring the expression of contractile proteins α-SMA and SM22, extracellular matrix protein osteopontin and type I collagen levels. Cell proliferation was measured by [3H]-thymidine incorporation and MTT assay, and migration was evaluated by wound healing and transwell assays. Expression of IL-1ß, IL-6 and IL-10 was assessed by ELISA. TNF-α induced autophagy as determined by increased LC3-II (1.91±0.21, p<0.001) and decreased p62 (0.86±0.02, p<0.05) when compared to control. Additionally, TNF-α decreased α-SMA (0.74±0.12, p<0.05) and SM22 (0.54±0.01, p<0.01) protein levels. Consequently, TNF-α induced migration (1.25±0.05, p<0.05), proliferation (2.33±0.24, p<0.05), and the secretion of IL-6 (258±53, p<0.01), type I collagen (3.09±0.85, p<0.01) and osteopontin (2.32±0.46, p<0.01). Inhibition of autophagy prevented all the TNF-α-induced phenotypic changes. TNF-α induces phenotype switching in A7r5 cell line by a mechanism that required autophagy. Therefore, autophagy may be a potential therapeutic target for the treatment of atherosclerosis.
Assuntos
Aterosclerose/metabolismo , Autofagia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Aterosclerose/patologia , Linhagem Celular , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , RatosRESUMO
Skeletal muscle plays a central role in insulin-controlled glucose homeostasis. The molecular mechanisms related to insulin resistance in this tissue are incompletely understood. Herpud1 is an endoplasmic reticulum membrane protein that maintains intracellular Ca2+ homeostasis under stress conditions. It has recently been reported that Herpud1-knockout mice display intolerance to a glucose load without showing altered insulin secretion. The functions of Herpud1 in skeletal muscle also remain unknown. Based on these findings, we propose that Herpud1 is necessary for insulin-dependent glucose disposal in skeletal muscle. Here we show that Herpud1 silencing decreased insulin-dependent glucose uptake, GLUT4 translocation to the plasma membrane, and Akt Ser473 phosphorylation in cultured L6 myotubes. A decrease in insulin-induced Akt Ser473 phosphorylation was observed in soleus but not in extensor digitorum longus muscle samples from Herpud1-knockout mice. Herpud1 knockdown increased the IP3R-dependent cytosolic Ca2+ response and the activity of Ca2+-dependent serine/threonine phosphatase calcineurin in L6 cells. Calcineurin decreased insulin-dependent Akt phosphorylation and glucose uptake. Moreover, calcineurin inhibition restored the insulin response in Herpud1-depleted L6 cells. Based on these findings, we conclude that Herpud1 is necessary for adequate insulin-induced glucose uptake due to its role in Ca2+/calcineurin regulation in L6 myotubes.
Assuntos
Calcineurina/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Proteínas de Membrana/metabolismo , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Calcineurina/genética , Glucose/genética , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Insulina/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/genéticaRESUMO
Cardiomyocyte hypertrophy has been associated with diminished mitochondrial metabolism. Mitochondria are crucial organelles for the production of ATP, and their morphology and function are regulated by the dynamic processes of fusion and fission. The relationship between mitochondrial dynamics and cardiomyocyte hypertrophy is still poorly understood. Here, we show that treatment of cultured neonatal rat cardiomyocytes with the hypertrophic agonist norepinephrine promotes mitochondrial fission (characterized by a decrease in mitochondrial mean volume and an increase in the relative number of mitochondria per cell) and a decrease in mitochondrial function. We demonstrate that norepinephrine acts through α1-adrenergic receptors to increase cytoplasmic Ca(2+), activating calcineurin and promoting migration of the fission protein Drp1 (encoded by Dnml1) to mitochondria. Dominant-negative Drp1 (K38A) not only prevented mitochondrial fission, it also blocked hypertrophic growth of cardiomyocytes in response to norepinephrine. Remarkably, an antisense adenovirus against the fusion protein Mfn2 (AsMfn2) was sufficient to increase mitochondrial fission and stimulate a hypertrophic response without agonist treatment. Collectively, these results demonstrate the importance of mitochondrial dynamics in the development of cardiomyocyte hypertrophy and metabolic remodeling.
Assuntos
Calcineurina/metabolismo , Mitocôndrias Cardíacas/fisiologia , Dinâmica Mitocondrial , Miócitos Cardíacos/fisiologia , Agonistas alfa-Adrenérgicos/farmacologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Cardiomegalia/metabolismo , Células Cultivadas , Dinaminas/genética , Dinaminas/metabolismo , GTP Fosfo-Hidrolases , Hipertrofia/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Norepinefrina/farmacologia , Transporte Proteico , Ratos Sprague-Dawley , Receptores Adrenérgicos alfa 1/metabolismoRESUMO
Incretin GLP-1 has important metabolic effects on several tissues, mainly through the regulation of glucose uptake and usage. One mechanism for increasing cell metabolism is modulating endoplasmic reticulum (ER)-mitochondria communication, as it allows for a more efficient transfer of Ca(2+) into the mitochondria, thereby increasing activity. Control of glucose metabolism is essential for proper vascular smooth muscle cell (VSMC) function. GLP-1 has been shown to produce varied metabolic actions, but whether it regulates glucose metabolism in VSMC remains unknown. In this report, we show that GLP-1 increases mitochondrial activity in the aortic cell line A7r5 by increasing ER-mitochondria coupling. GLP-1 increases intracellular glucose and diminishes glucose uptake without altering glycogen content. ATP, mitochondrial potential and oxygen consumption increase at 3h of GLP-1 treatment, paralleled by increased Ca(2+) transfer from the ER to the mitochondria. Furthermore, GLP-1 increases levels of Mitofusin-2 (Mfn2), an ER-mitochondria tethering protein, via a PKA-dependent mechanism. Accordingly, PKA inhibition and Mfn2 down-regulation prevented mitochondrial Ca(2+) increases in GLP-1 treated cells. Inhibiting both Ca(2+) release from the ER and Ca(2+) entry into mitochondria as well as diminishing Mfn2 levels blunted the increase in mitochondrial activity in response to GLP-1. Altogether, these results strongly suggest that GLP-1 increases ER-mitochondria communication in VSMC, resulting in higher mitochondrial activity.
Assuntos
Retículo Endoplasmático/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Mitocôndrias/metabolismo , Miócitos de Músculo Liso/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , GTP Fosfo-Hidrolases , Receptor do Peptídeo Semelhante ao Glucagon 1 , Glucose/metabolismo , Glicogênio/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Ratos , Receptores de Glucagon/genética , Receptores de Glucagon/metabolismoRESUMO
Cellular organelles do not function as isolated or static units, but rather form dynamic contacts between one another that can be modulated according to cellular needs. The physical interfaces between organelles are important for Ca2+ and lipid homeostasis, and serve as platforms for the control of many essential functions including metabolism, signaling, organelle integrity and execution of the apoptotic program. Emerging evidence also highlights the importance of organelle communication in disorders such as Alzheimer's disease, pulmonary arterial hypertension, cancer, skeletal and cardiac muscle dysfunction. Here, we provide an overview of the current literature on organelle communication and the link to human pathologies.
Assuntos
Sinalização do Cálcio/fisiologia , Organelas/metabolismo , Organelas/patologia , Homeostase , Humanos , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Transdução de SinaisRESUMO
Insulin is a major regulator of glucose metabolism, stimulating its mitochondrial oxidation in skeletal muscle cells. Mitochondria are dynamic organelles that can undergo structural remodeling in order to cope with these ever-changing metabolic demands. However, the process by which mitochondrial morphology impacts insulin signaling in the skeletal muscle cells remains uncertain. To address this question, we silenced the mitochondrial fusion proteins Mfn2 and Opa1 and assessed insulin-dependent responses in L6 rat skeletal muscle cells. We found that mitochondrial fragmentation attenuates insulin-stimulated Akt phosphorylation, glucose uptake and cell respiratory rate. Importantly, we found that insulin induces a transient rise in mitochondrial Ca(2+) uptake, which was attenuated by silencing Opa1 or Mfn2. Moreover, treatment with Ruthenium red, an inhibitor of mitochondrial Ca(2+) uptake, impairs Akt signaling without affecting mitochondrial dynamics. All together, these results suggest that control of mitochondrial Ca(2+) uptake by mitochondrial morphology is a key event for insulin-induced glucose uptake.