Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain ; 142(1): 163-175, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30496349

RESUMO

In addition to being the greatest genetic risk factor for Alzheimer's disease, expression of the ɛ4 allele of apolipoprotein E can lead to cognitive decline during ageing that is independent of Alzheimer's amyloid-ß and tau pathology. In human post-mortem tissue and mouse models humanized for apolipoprotein E, we examined the impact of apolipoprotein E4 expression on brain exosomes, vesicles that are produced within and secreted from late-endocytic multivesicular bodies. Compared to humans or mice homozygous for the risk-neutral ɛ3 allele we show that the ɛ4 allele, whether homozygous or heterozygous with an ɛ3 allele, drives lower exosome levels in the brain extracellular space. In mice, we show that the apolipoprotein E4-driven change in brain exosome levels is age-dependent: while not present at age 6 months, it is detectable at 12 months of age. Expression levels of the exosome pathway regulators tumor susceptibility gene 101 (TSG101) and Ras-related protein Rab35 (RAB35) were found to be reduced in the brain at the protein and mRNA levels, arguing that apolipoprotein E4 genotype leads to a downregulation of exosome biosynthesis and release. Compromised exosome production is likely to have adverse effects, including diminishing a cell's ability to eliminate materials from the endosomal-lysosomal system. This reduction in brain exosome levels in 12-month-old apolipoprotein E4 mice occurs earlier than our previously reported brain endosomal pathway changes, arguing that an apolipoprotein E4-driven failure in exosome production plays a primary role in endosomal and lysosomal deficits that occur in apolipoprotein E4 mouse and human brains. Disruption of these interdependent endosomal-exosomal-lysosomal systems in apolipoprotein E4-expressing individuals may contribute to amyloidogenic amyloid-ß precursor protein processing, compromise trophic signalling and synaptic function, and interfere with a neuron's ability to degrade material, all of which are events that lead to neuronal vulnerability and higher risk of Alzheimer's disease development. Together, these data suggest that exosome pathway dysfunction is a previously unappreciated component of the brain pathologies that occur as a result of apolipoprotein E4 expression.


Assuntos
Apolipoproteína E4/biossíntese , Encéfalo/metabolismo , Exossomos/metabolismo , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Alelos , Animais , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Proteínas de Ligação a DNA/biossíntese , Regulação para Baixo , Complexos Endossomais de Distribuição Requeridos para Transporte/biossíntese , Exossomos/ultraestrutura , Espaço Extracelular/metabolismo , Feminino , Genótipo , Humanos , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Fatores de Transcrição/biossíntese , Proteínas rab de Ligação ao GTP/biossíntese
2.
J Neurosci ; 36(15): 4248-58, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27076423

RESUMO

Epidemiological findings suggest that diabetic individuals are at a greater risk for developing Alzheimer's disease (AD). To examine the mechanisms by which diabetes mellitus (DM) may contribute to AD pathology in humans, we examined brain tissue from streptozotocin-treated type 1 diabetic adult male vervet monkeys receiving twice-daily exogenous insulin injections for 8-20 weeks. We found greater inhibitory phosphorylation of insulin receptor substrate 1 in each brain region examined of the diabetic monkeys when compared with controls, consistent with a pattern of brain insulin resistance that is similar to that reported in the human AD brain. Additionally, a widespread increase in phosphorylated tau was seen, including brain areas vulnerable in AD, as well as relatively spared structures, such as the cerebellum. An increase in active ERK1/2 was also detected, consistent with DM leading to changes in tau-kinase activity broadly within the brain. In contrast to these widespread changes, we found an increase in soluble amyloid-ß (Aß) levels that was restricted to the temporal lobe, with the greatest increase seen in the hippocampus. Consistent with this localized Aß increase, a hippocampus-restricted decrease in the protein and mRNA for the Aß-degrading enzyme neprilysin (NEP) was found, whereas various Aß-clearing and -degrading proteins were unchanged. Thus, we document multiple biochemical changes in the insulin-controlled DM monkey brain that can link DM with the risk of developing AD, including dysregulation of the insulin-signaling pathway, changes in tau phosphorylation, and a decrease in NEP expression in the hippocampus that is coupled with a localized increase in Aß. SIGNIFICANCE STATEMENT: Given that diabetes mellitus (DM) appears to increase the risk of developing Alzheimer's disease (AD), understanding the mechanisms by which DM promotes AD is important. We report that DM in a nonhuman primate brain leads to changes in the levels or posttranslational processing of proteins central to AD pathobiology, including tau, amyloid-ß (Aß), and the Aß-degrading protease neprilysin. Additional evidence from this model suggests that alterations in brain insulin signaling occurred that are reminiscent of insulin signaling pathway changes seen in human AD. Thus, in an in vivo model highly relevant to humans, we show multiple alterations in the brain resulting from DM that are mechanistically linked to AD risk.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Química Encefálica , Diabetes Mellitus Tipo 1/metabolismo , Hipocampo/metabolismo , Resistência à Insulina , Neprilisina/metabolismo , Proteínas tau/metabolismo , Animais , Chlorocebus aethiops , Diabetes Mellitus Experimental/metabolismo , Fígado/metabolismo , Masculino , Fosforilação , Transdução de Sinais
3.
Neurobiol Aging ; 36(7): 2241-2247, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25911278

RESUMO

Endogenous murine amyloid-ß peptide (Aß) is expressed in most Aß precursor protein (APP) transgenic mouse models of Alzheimer's disease but its contribution to ß-amyloidosis remains unclear. We demonstrate ∼ 35% increased cerebral Aß load in APP23 transgenic mice compared with age-matched APP23 mice on an App-null background. No such difference was found for the much faster Aß-depositing APPPS1 transgenic mouse model between animals with or without the murine App gene. Nevertheless, both APP23 and APPPS1 mice codeposited murine Aß, and immunoelectron microscopy revealed a tight association of murine Aß with human Aß fibrils. Deposition of murine Aß was considerably less efficient compared with the deposition of human Aß indicating a lower amyloidogenic potential of murine Aß in vivo. The amyloid dyes Pittsburgh Compound-B and pentamer formyl thiophene acetic acid did not differentiate between amyloid deposits consisting of human Aß and deposits of mixed human-murine Aß. Our data demonstrate a differential effect of murine Aß on human Aß deposition in different APP transgenic mice. The mechanistically complex interaction of human and mouse Aß may affect pathogenesis of the models and should be considered when models are used for translational preclinical studies.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Encéfalo/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos Transgênicos
4.
Behav Brain Res ; 237: 96-102, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23000537

RESUMO

Olfaction is often impaired in Alzheimer's disease (AD) and is also dysfunctional in mouse models of the disease. We recently demonstrated that short-term passive anti-murine-Aß immunization can rescue olfactory behavior in the Tg2576 mouse model overexpressing a human mutation of the amyloid precursor protein (APP) after ß-amyloid deposition. Here we tested the ability to preserve normal olfactory behaviors by means of long-term passive anti-murine-Aß immunization. Seven-month-old Tg2576 and non-transgenic littermate (NTg) mice were IP-injected biweekly with the m3.2 murine-Aß-specific antibody until 16 mo of age when mice were tested in the odor habituation test. While Tg2576 mice treated with a control antibody showed elevations in odor investigation times and impaired odor habituation compared to NTg, olfactory behavior was preserved to NTg levels in m3.2-immunized Tg2576 mice. Immunized Tg2576 mice had significantly less ß-amyloid immunolabeling in the olfactory bulb and entorhinal cortex, yet showed elevations in Thioflavin-S labeled plaques in the piriform cortex. No detectable changes in APP metabolite levels other than Aß were found following m3.2 immunization. These results demonstrate efficacy of chronic, long-term anti-murine-Aß m3.2 immunization in preserving normal odor-guided behaviors in a human APP Tg model. Further, these results provide mechanistic insights into olfactory dysfunction as a biomarker for AD by yielding evidence that focal reductions of Aß may be sufficient to preserve olfaction.


Assuntos
Doença de Alzheimer/complicações , Peptídeos beta-Amiloides/imunologia , Peptídeos beta-Amiloides/metabolismo , Anticorpos/uso terapêutico , Transtornos do Olfato/etiologia , Transtornos do Olfato/terapia , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mutação/genética , Transtornos do Olfato/imunologia , Fatores de Tempo
5.
Neurobiol Aging ; 33(6): 1125.e9-18, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22206846

RESUMO

We report that neuronal overexpression of the endogenous inhibitor of calpains, calpastatin (CAST), in a mouse model of human Alzheimer's disease (AD) ß-amyloidosis, the APP23 mouse, reduces ß-amyloid (Aß) pathology and Aß levels when comparing aged, double transgenic (tg) APP23/CAST with APP23 mice. Concurrent with Aß plaque deposition, aged APP23/CAST mice show a decrease in the steady-state brain levels of the amyloid precursor protein (APP) and APP C-terminal fragments (CTFs) when compared with APP23 mice. This CAST-dependent decrease in APP metabolite levels was not observed in single tg CAST mice expressing endogenous APP or in younger, Aß plaque predepositing APP23/CAST mice. We also determined that the CAST-mediated inhibition of calpain activity in the brain is greater in the CAST mice with Aß pathology than in non-APP tg mice, as demonstrated by a decrease in calpain-mediated cytoskeleton protein cleavage. Moreover, aged APP23/CAST mice have reduced extracellular signal-regulated kinase 1/2 (ERK1/2) activity and tau phosphorylation when compared with APP23 mice. In summary, in vivo calpain inhibition mediated by CAST transgene expression reduces Aß pathology in APP23 mice, with our findings further suggesting that APP metabolism is modified by CAST overexpression as the mice develop Aß pathology. Our results indicate that the calpain system in neurons is more responsive to CAST inhibition under conditions of Aß pathology, suggesting that in the disease state neurons may be more sensitive to the therapeutic use of calpain inhibitors.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/fisiologia , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/patologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA