Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Front Immunol ; 13: 837281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844513

RESUMO

The concept of biological identity has been traditionally a central issue in immunology. The assumption that entities foreign to a specific organism should be rejected by its immune system, while self-entities do not trigger an immune response is challenged by the expanded immunotolerance observed in pregnancy. To explain this "immunological paradox", as it was first called by Sir Peter Medawar, several mechanisms have been described in the last decades. Among them, the intentional transfer and retention of small amounts of cells between a mother and her child have gained back attention. These microchimeric cells contribute to expanding allotolerance in both organisms and enhancing genetic fitness, but they could also provoke aberrant alloimmune activation. Understanding the mechanisms used by microchimeric cells to exert their function in pregnancy has proven to be challenging as per definition they are extremely rare. Profiting from studies in the field of transplantation and cancer research, a synergistic effect of microchimerism and cellular communication based on the secretion of extracellular vesicles (EVs) has begun to be unveiled. EVs are already known to play a pivotal role in feto-maternal tolerance by transferring cargo from fetal to maternal immune cells to reshape their function. A further aspect of EVs is their function in antigen presentation either directly or on the surface of recipient cells. Here, we review the current understanding of microchimerism in the feto-maternal tolerance during human pregnancy and the potential role of EVs in mediating the allorecognition and tropism of microchimeric cells.


Assuntos
Quimerismo , Vesículas Extracelulares , Feminino , Feto , Humanos , Tolerância Imunológica , Troca Materno-Fetal , Gravidez
2.
Mol Aspects Med ; 87: 101023, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34521556

RESUMO

Tobacco smoking is an important public health issue recognized by the world health organization as one of the most serious, preventable risk factors for developing a series of pregnancy pathologies. Maternal smoking is positively associated with intrauterine growth restriction (IUGR) and gestational diabetes (GDM), but negatively associated with preeclampsia (PE). In this review, we examine epidemiological, clinical and laboratory studies of smoking effects on immunoregulation during pregnancy, trophoblast function, and placental vasculature development and metabolism. We aim to identify effects of tobacco smoke components on specific placental compartments or cells, which may contribute to the understanding of the influences of maternal smoking on placenta function in normal and pathological pregnancies. Data corroborates that in any trimester, smoking is unsafe for pregnancy and that its detrimental effects outweigh questionable benefits. The effects of maternal smoking on the maternal immune regulation throughout pregnancy and the impact of different tobacco products on fetal growth have not yet been fully understood. Smoking cessation rather than treatment with replacement therapies is recommended for future mothers because also single components of tobacco and its smoke may have detrimental effects on placental function.


Assuntos
Placenta , Fumar , Feminino , Retardo do Crescimento Fetal/epidemiologia , Retardo do Crescimento Fetal/etiologia , Retardo do Crescimento Fetal/metabolismo , Humanos , Placenta/metabolismo , Gravidez , Fumar/efeitos adversos , Fumar/metabolismo , Fumar Tabaco , Uso de Tabaco , Trofoblastos/metabolismo
3.
Biochim Biophys Acta Mol Basis Dis ; 1867(11): 166218, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34311080

RESUMO

Throughout history, pandemics of infectious diseases caused by emerging viruses have spread worldwide. Evidence from previous outbreaks demonstrated that pregnant women are at high risk of contracting the diseases and suffering from adverse outcomes. However, while some viruses can cause major health complications for the mother and her fetus, others do not appear to affect pregnancy. Viral surface proteins bind to specific receptors on the cellular membrane of host cells and begin therewith the infection process. During pregnancy, the molecular features of these proteins may determine specific target cells in the placenta, which may explain the different outcomes. In this review, we display information on Variola, Influenza, Zika and Corona viruses focused on their surface proteins, effects on pregnancy, and possible target placental cells. This will contribute to understanding viral entry during pregnancy, as well as to develop strategies to decrease the incidence of obstetrical problems in current and future infections.


Assuntos
Placenta/virologia , Complicações Infecciosas na Gravidez/virologia , Proteínas do Envelope Viral/metabolismo , Viroses/virologia , Feminino , Humanos , Placenta/metabolismo , Gravidez , Complicações Infecciosas na Gravidez/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Vírus da Varíola/metabolismo , Vírus da Varíola/patogenicidade , Viroses/metabolismo , Zika virus/metabolismo , Zika virus/patogenicidade
4.
Placenta ; 108: 122-133, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33810901

RESUMO

INTRODUCTION: Research on human placental development and function lacks a conclusive in vivo model. To investigate the intracellular molecular mechanisms in trophoblast cells, different cell lines have been established during the last decades. So far, none of these accomplishes all features of primary trophoblast, thus their suitability as well as the transferability of the results has been discussed. The aim of this study is to assess molecular markers and features matching different trophoblast subpopulations in trophoblastic cell lines to provide orientation on their suitability and relevance for distinct research questions. METHODS: The commonly used trophoblastic cell lines, BeWo, JEG-3, HTR-8/SVneo, AC1-M59, AC1-M32, ACH-3P and Swan71 were selected. qPCR and immunoblotting were used to determine expression of characteristic molecular markers. C14MC, C19MC and miR-371-3 miRNA expression were investigated by real time PCR. Proliferation, migration and network stabilization assays were performed. Hormone secretion was determined by chemiluminescent-immunoassays. DNA profiles were obtained by Short Tandem Repeat (STR)-genotyping. RESULTS: Immortalized cell lines differ from choriocarcinoma-derived ones in the expression of HLA-G, E-cadherin, N-cadherin, VE-cadherin, cadherin-11, cytokeratin 7, vimentin, ADAM12 and PRG2. Compared to choriocarcinoma-derived cell lines, expression of C19MC and hormone secretion were almost absent in immortalized cell lines. Conversely, they express C14MC and exhibit higher migration and network stabilization. DISCUSSION: The data presented will help justify the use of a cell line to evaluate distinct features of trophoblast biology and pathology. In general, characteristics and markers of choriocarcinoma derived cell lines seem to be more similar to in vivo trophoblast than immortalized cell lines and thus might be regarded as more suitable models.


Assuntos
MicroRNAs/metabolismo , Placenta/metabolismo , Trofoblastos/metabolismo , Animais , Linhagem Celular , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Feminino , Humanos , Gravidez
5.
Int J Mol Sci ; 22(6)2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33799364

RESUMO

Epithelial membrane proteins (EMP1-3) are involved in epithelial differentiation and carcinogenesis. Dysregulated expression of EMP2 was observed in various cancers, but its role in human lung cancer is not yet clarified. In this study, we analyzed the expression of EMP1-3 and investigated the biological function of EMP2 in non-small cell lung cancer (NSCLC). The results showed that lower expression of EMP1 was significantly correlated with tumor size in primary lung tumors (p = 0.004). Overexpression of EMP2 suppressed tumor cell growth, migration, and invasion, resulting in a G1 cell cycle arrest, with knockdown of EMP2 leading to enhanced cell migration, related to MAPK pathway alterations and disruption of cell cycle regulatory genes. Exosomes isolated from transfected cells were taken up by tumor cells, carrying EMP2-downregulated microRNAs (miRNAs) which participated in regulation of the tumor microenvironment. Our data suggest that decreased EMP1 expression is significantly related to increased tumor size in NSCLC. EMP2 suppresses NSCLC cell growth mainly by inhibiting the MAPK pathway. EMP2 might further affect the tumor microenvironment by regulating tumor microenvironment-associated miRNAs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Proliferação de Células/genética , Glicoproteínas de Membrana/genética , Proteínas de Neoplasias/genética , Receptores de Superfície Celular/genética , Microambiente Tumoral/genética , Idoso , Carcinoma Pulmonar de Células não Pequenas/patologia , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Exossomos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Transdução de Sinais/genética
6.
Arch Gynecol Obstet ; 303(6): 1513-1522, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33575847

RESUMO

PURPOSE: Several roles are attributed to the myometrium including sperm and embryo transport, menstrual discharge, control of uterine blood flow, and labor. Although being a target of diabetes complications, the influence of high glucose on this compartment has been poorly investigated. Both miRNAs and IGF1R are associated with diabetic complications in different tissues. Herein, we examined the effects of high glucose on the expression of miRNAs and IGF1R signaling pathway in the human myometrium. METHODS: Human myometrial explants were cultivated for 48 h under either high or low glucose conditions. Thereafter, the conditioned medium was collected for biochemical analyses and the myometrial samples were processed for histological examination as well as miRNA and mRNA expression profiling by qPCR. RESULTS: Myometrial structure and morphology were well preserved after 48 h of cultivation in both high and low glucose conditions. Levels of lactate, creatinine, LDH and estrogen in the supernatant were similar between groups. An explorative screening by qPCR arrays revealed that 6 out of 754 investigated miRNAs were differentially expressed in the high glucose group. Data validation by single qPCR assays confirmed diminished expression of miR-215-5p and miR-296-5p, and also revealed reduced miR-497-3p levels. Accordingly, mRNA levels of IGF1R and its downstream mediators FOXO3 and PDCD4, which are potentially targeted by miR-497-3p, were elevated under high glucose conditions. In contrast, mRNA expression of IGF1, PTEN, and GLUT1 was unchanged. CONCLUSIONS: The human myometrium responds to short-term exposure (48 h) to high glucose concentrations by regulating the expression of miRNAs, IGF1R and its downstream targets.


Assuntos
Trabalho de Parto , Transdução de Sinais , Adulto , Proteínas Reguladoras de Apoptose , Feminino , Glucose , Humanos , MicroRNAs/genética , Pessoa de Meia-Idade , Miométrio , Gravidez , Proteínas de Ligação a RNA , Receptor IGF Tipo 1
7.
Reprod Toxicol ; 96: 95-101, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32505695

RESUMO

Doxorubicin (DOX) is one of the most commonly used drugs for the treatment of childhood cancers, including leukemia and lymphomas. Despite the high survival rate, female leukemia survivors are at higher risk of ovarian failure and infertility later in life. Treatment with chemotherapeutic drugs like DOX is associated with damage in ovarian follicles, but the affectation grade of granulosa cells remains unclear. To assess and avoid the possible side-effects of DOX, early biomarkers of ovarian injury and chemotherapy-induced ovarian toxicity should be identified. MicroRNAs (miRNAs) have emerged in recent years as a promising new class of biomarkers for drug-induced tissue toxicity. In this study, the effects of DOX on cell viability, steroidogenesis, and miRNA expression were studied in primary granulosa cells (GCs) and in two cellular models (COV434 and KGN cells). We report that compared to other chemotherapeutic drugs, DOX treatment is more detrimental to granulosa cells as observed by decrease of cell viability. Treatment with DOX changes the expression of the aromatase gene (CYP19A1) and the secretion of 17ß-estradiol (E2) in a cell-specific manner. miR-132-3p is dose-dependently increased by DOX in all cellular models. In absence of DOX, miR-132-3p overexpression in COV434 cells has no effect on E2 secretion or CYP19A1 expression. Altogether, these findings contribute to understanding the hormonal disbalance caused by DOX in human ovarian cells and suggest miR-132 as a putative sensor to predict DOX-induced ovarian toxicity.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Doxorrubicina/toxicidade , Células da Granulosa/efeitos dos fármacos , Aromatase/genética , Biomarcadores , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Estradiol/metabolismo , Feminino , Células da Granulosa/metabolismo , Humanos , MicroRNAs
8.
Int J Mol Sci ; 21(10)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32422900

RESUMO

Members of the placenta-specific miRNA cluster C19MC, including miR-519d, are secreted by fetal trophoblast cells within extracellular vesicles (EVs). Trophoblast-derived EVs can be internalized by the autologous trophoblast and surrounding maternal immune cells, resulting in coordination of cellular responses. The study of functions and targets of placental miRNAs in the donor and recipient cells may contribute to the understanding of the immune tolerance essential in pregnancy. Here, we report that miR-519d-3p levels correlate positively with cell proliferation and negatively with migration in trophoblastic cell lines. Inhibition of miR-519d-3p in JEG-3 cells increases caspase-3 activation and apoptosis. PDCD4 and PTEN are targeted by miR-519d-3p in a cell type-specific manner. Transfection of trophoblastic cell lines with miR-519d mimic results in secretion of EVs containing elevated levels of this miRNA (EVmiR-519d). Autologous cells enhance their proliferation and decrease their migration ability when treated with EVmiR-519d. NK92 cells incorporate EV-delivered miR-519d-3p at higher levels than Jurkat T cells. EVmiR-519d increases the proliferation of Jurkat T cells but decreases that of NK92 cells. Altogether, miR-519d-3p regulates pivotal trophoblast cell functions, can be transferred horizontally via EVs to maternal immune cells and exerts functions therein. Vesicular miRNA transfer from fetal trophoblasts to maternal immune cells may contribute to the immune tolerance in pregnancy.


Assuntos
Proteínas Reguladoras de Apoptose/genética , MicroRNAs/genética , PTEN Fosfo-Hidrolase/genética , Proteínas de Ligação a RNA/genética , Trofoblastos/metabolismo , Apoptose/genética , Caspase 3/genética , Movimento Celular/genética , Proliferação de Células/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/imunologia , Feminino , Humanos , Tolerância Imunológica/genética , Tolerância Imunológica/imunologia , Células Jurkat , Células Matadoras Naturais/imunologia , Placenta/imunologia , Placenta/metabolismo , Placentação/genética , Gravidez , Linfócitos T/imunologia , Trofoblastos/imunologia
9.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396613

RESUMO

IL-36 cytokines (the agonists IL-36α, IL-36ß, IL-36γ, and the antagonist IL-36Ra) are expressed in the mouse uterus and associated with maternal immune response during pregnancy. Here, we characterize the expression of IL-36 members in human primary trophoblast cells (PTC) and trophoblastic cell lines (HTR-8/SVneo and JEG-3) and upon treatment with bacterial and viral components. Effects of recombinant IL-36 on the migration capacity of trophoblastic cells, their ability to interact with endothelial cells and the induction of angiogenic factors and miRNAs (angiomiRNAs) were examined. Constitutive protein expression of IL-36 (α, ß, and γ) and their receptor (IL-36R) was found in all cell types. In PTC, transcripts for all IL-36 subtypes were found, whereas in trophoblastic cell lines only for IL36G and IL36RN. A synthetic analog of double-stranded RNA (poly I:C) and lipopolysaccharide (LPS) induced the expression of IL-36 members in a cell-specific and time-dependent manner. In HTR-8/SVneo cells, IL-36 cytokines increased cell migration and their capacity to interact with endothelial cells. VEGFA and PGF mRNA and protein, as well as the angiomiRNAs miR-146a-3p and miR-141-5p were upregulated as IL-36 response in PTC and HTR-8/SVneo cells. In conclusion, IL-36 cytokines are modulated by microbial components and regulate trophoblast migration and interaction with endothelial cells. Therefore, a fundamental role of these cytokines in the placentation process and in response to infections may be expected.


Assuntos
Regulação da Expressão Gênica/genética , Interleucina-1/genética , Neovascularização Fisiológica/genética , Trofoblastos/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/fisiologia , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-1/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Lipopolissacarídeos/farmacologia , MicroRNAs/genética , Neovascularização Fisiológica/fisiologia , Poli I-C/farmacologia , Prostaglandinas F/genética , Prostaglandinas F/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Trofoblastos/citologia , Trofoblastos/fisiologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Placenta ; 88: 20-27, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31586768

RESUMO

INTRODUCTION: Leukemia Inhibitory Factor (LIF) regulates behavior of trophoblast cells and their interaction with immune and endothelial cells. In vitro, trophoblast cell response to LIF may vary depending on the cell model. Reported differences in the miRNA profile of trophoblastic cells may be responsible for these observations. Therefore, miRNA expression was investigated in four trophoblastic cell lines under LIF stimulation followed by in silico analysis of altered miRNAs and their associated pathways. METHODS: Low density TaqMan miRNA assays were used to quantify levels of 762 mature miRNAs under LIF stimulation in three choriocarcinoma-derived (JEG-3, ACH-3P and AC1-M59) and a trophoblast immortalized (HTR-8/SVneo) cell lines. Expression of selected miRNAs was confirmed in primary trophoblast cells and cell lines by qPCR. Targets and associated pathways of the differentially expressed miRNAs were inferred from the miRTarBase followed by a KEGG Pathway Enrichment Analysis. HTR-8/SVneo and JEG-3 cells were transfected with miR-21-mimics and expression of miR-21 targets was assessed by qPCR. RESULTS: A similar number of miRNAs changed in each tested cell line upon LIF stimulation, however, low coincidence of individual miRNA species was observed and occurred more often among choriocarcinoma-derived cells (complete data set at http://www.ncbi.nlm.nih.gov/geo/ under GEO accession number GSE130489). Altered miRNAs were categorized into pathways involved in human diseases, cellular processes and signal transduction. Six cascades were identified as significantly enriched, including JAK/STAT and TGFB-SMAD. Upregulation of miR-21-3p was validated in all cell lines and primary cells and STAT3 was confirmed as its target. DISCUSSION: Dissimilar miRNA responses may be involved in differences of LIF effects on trophoblastic cell lines.


Assuntos
Fator Inibidor de Leucemia/fisiologia , MicroRNAs/metabolismo , Trofoblastos/fisiologia , Linhagem Celular , Humanos , Fator de Transcrição STAT3/metabolismo
11.
Reprod Biol ; 18(3): 252-258, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30001982

RESUMO

Dienogest (DNG) administration is a well-established treatment for endometriosis but bleeding irregularities remain its main disadvantage. Changes in diet, mainly to vegetable consumption, are beneficial in the treatment of estrogen-related pathologies but their use for endometriosis has been poorly studied. In this study, addition of the phytochemical 3,3'-diindolylmethane (DIM) to DNG therapy has been investigated in in vitro and ex vivo models for endometriosis and in a small cohort of women with endometriosis. Endometrial Ishikawa cells were treated with DNG or DIM at dosages from 10-10 M to 10-5 M for up to 72 h. Cell proliferation was measured by assessing BrdU incorporation. Endometrial tissue from women with endometriosis and controls was incubated with DNG or a combination of DNG and DIM. Tissue viability was determined using a modified colorimetric MTS assay. 17ß-estradiol secretion was quantified by an electro-chemiluminescence immunoassay. Finally, DNG as monotherapy or in combination with DIM was randomly administered to women with endometriosis (n = 8) over 3 months. Bleeding patterns and associated pelvic pain were assessed by Visual Analogue Scale (VAS). DNG and DIM significantly reduced cell proliferation in Ishikawa cells. Ex vivo, DIM reduced viability and estradiol secretion specifically in endometriotic but not in normal endometrial tissue. This effect was enhanced by combination with DNG. Endometriosis associated pelvic pain was significantly reduced in patients taking the DNG-DIM combination therapy compared to those taking DNG alone. Bleeding pattern (number and duration of episodes) was significantly improved by addition of DIM to the DNG treatment. In conclusion, addition of DIM enhances effects of DNG ex vivo and may ameliorate bleeding patterns in endometriosis patients.


Assuntos
Proliferação de Células/efeitos dos fármacos , Endometriose/tratamento farmacológico , Endométrio/efeitos dos fármacos , Indóis/farmacologia , Nandrolona/análogos & derivados , Linhagem Celular , Quimioterapia Combinada , Feminino , Humanos , Indóis/uso terapêutico , Nandrolona/farmacologia , Nandrolona/uso terapêutico
12.
Exp Cell Res ; 359(1): 275-283, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28729093

RESUMO

Proviral insertion in murine (PIM) lymphoma proteins are mainly regulated by the Janus Kinase/Signal Transducer Activator of Transcription (JAK/STAT) signaling pathway, which can be activated by members of the Interleukin-6 (IL-6) family, including Leukemia Inhibitory Factor (LIF). Aim of the study was to compare PIM1, PIM2 and PIM3 expression and potential cellular functions in human first and third trimester trophoblast cells, the immortalized first trimester extravillous trophoblast cell line HTR8/SVneo and the choriocarcinoma cell line JEG-3. Expression was analyzed by qPCR and immunochemical staining. Functions were evaluated by PIM inhibition followed by analysis of kinetics of cell viability as assessed by MTS assay, proliferation by BrdU assay, and apoptosis by Western blotting for BAD, BCL-XL, (cleaved) PARP, CASP3 and c-MYC. Apoptosis and necrosis were tested by flow cytometry (annexin V/propidium iodide staining). All analyzed PIM kinases are expressed in primary trophoblast cells and both cell lines and are regulated upon stimulation with LIF. Inhibition of PIM kinases significantly reduces viability and proliferation and induces apoptosis. Simultaneously, phosphorylation of c-MYC was reduced. These results demonstrate the involvement of PIM kinases in LIF-induced regulation in different trophoblastic cell lines which may indicate similar functions in primary cells.


Assuntos
Apoptose , Espaço Intracelular/metabolismo , Fator Inibidor de Leucemia/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Trofoblastos/enzimologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citometria de Fluxo , Humanos , Imidazóis/farmacologia , Immunoblotting , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Piridazinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Trofoblastos/citologia , Trofoblastos/efeitos dos fármacos
13.
Reprod Biol ; 17(3): 218-224, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28552376

RESUMO

Trophoblast proliferation and invasion are controlled by cytokines and growth factors present at the implantation site. Members of the Interleukin-6 (IL-6) family of cytokines trigger their effects through activation of intracellular cascades including the Janus Kinase/Signal Transducer and Activator of Transcription (JAK-STAT) pathway. Functions of several STAT molecules in trophoblast cells have been described, but the role of STAT1 remained unclear. Here, potential functions of STAT1 and its activation by Oncostatin M (OSM) have been investigated in an in vitro model. STAT1 expression and phosphorylation were analyzed in human term placenta tissue by immunohistochemistry. HTR-8/SVneo cells (immortalized human extravillous trophoblast cells) were stimulated with OSM, IL-6, IL-11, Leukemia Inhibitory Factor (LIF) and Granulocyte Macrophage Colony-Stimulating Factor. Expression and phosphorylation of STAT1 were analyzed by Western blotting and immunocytochemistry. Fludarabine and STAT1 siRNA were employed for STAT1 depletion. STAT1 transcriptional activity was evaluated by DNA-binding capacity assay. Cell viability and invasion were assessed by MTS and Matrigel assays, respectively. STAT1 was expressed in villous and extravillous trophoblast cells. Low phosphorylation was detectable exclusively in extravillous trophoblast cells. Only OSM and LIF induced phosphorylation of STAT1 in the in vitro model. Challenge with OSM increased cell invasion but not proliferation. Inhibition of STAT1 by fludarabine treatment or STAT1 siRNA transfection reduced cell viability and invasiveness in presence and absence of OSM. These results indicate the potential involvement of STAT1 in the regulation of trophoblast behavior. Furthermore, STAT 1 functions are more efficiently inhibited by blocking its expression than its phosphorylation.


Assuntos
Proliferação de Células/fisiologia , Fator de Transcrição STAT1/metabolismo , Trofoblastos/fisiologia , Linhagem Celular , Movimento Celular , Regulação da Expressão Gênica , Humanos , Interleucinas/genética , Interleucinas/metabolismo , Oncostatina M/metabolismo , Fosforilação , Interferência de RNA , RNA Interferente Pequeno , Fator de Transcrição STAT1/genética , Transdução de Sinais , Vidarabina/análogos & derivados , Vidarabina/farmacologia
14.
Cell Adh Migr ; 10(1-2): 28-38, 2016 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-26418280

RESUMO

Galectin-1 (gal-1), a member of the mammalian ß-galactoside-binding proteins, exerts biological effects by recognition of glycan ligands, including those involved in cell adhesion and growth regulation. In previous studies, we demonstrated that gal-1 induces cell differentiation processes on the membrane of choriocarcinoma cells BeWo, including the receptor tyrosine kinases (RTKs) REarranged during Transfection (RET), Janus Kinase 2 (JAK2) and Vascular endothelial growth factor receptor 3 (VEGFR3). Furthermore, Mitogen-Activated Protein Kinases (MAPK) and serine/threonine kinases were phosphorylated by gal-1. In addition, gal-1 in trophoblast cells in vitro induced syncytium formation especially after concentration dependent stimulation of the cells with this galectin. This is in contrast to MAPK-inhibitor U0126 that reduced syncytium formation of BeWo cells. The aim of this study was to analyze the syncytium formation abilities of BeWo cells that were gal-1 silenced. We found a significantly reduced syncytium formation rate in gal-1 silenced BeWo cells. In addition, these cells show a different miRNA expression profile. In summary, we found that gal-1 is a major trigger for fusion processes in BeWo cells. This function is accompanied by different regulation of miRNA synthesis in the BeWo cell culture model.


Assuntos
Galectina 1/genética , Inativação Gênica , Células Gigantes/metabolismo , MicroRNAs/biossíntese , Neoplasias Trofoblásticas/genética , Neoplasias Trofoblásticas/patologia , Caderinas/metabolismo , Fusão Celular , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , Feminino , Imunofluorescência , Galectina 1/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , MicroRNAs/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Solubilidade , Coloração e Rotulagem , Trofoblastos , beta Catenina/metabolismo
15.
Reprod Fertil Dev ; 28(5): 608-17, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25247600

RESUMO

Leukaemia inhibitory factor (LIF) and oncostatin M (OSM) are pleiotropic cytokines present at the implantation site that are important for the normal development of human pregnancy. These cytokines share the cell membrane receptor subunit gp130, resulting in similar functions. The aim of this study was to compare the response to LIF and OSM in several trophoblast models with particular regard to intracellular mechanisms and invasion. Four trophoblast cell lines with different characteristics were used: HTR-8/SVneo, JEG-3, ACH-3P and AC1-M59 cells. Cells were incubated with LIF, OSM (both at 10ngmL(-1)) and the signal transducer and activator of transcription (STAT) 3 inhibitor S3I-201 (200µM). Expression and phosphorylation of STAT3 (tyr(705)) and extracellular regulated kinase (ERK) 1/2 (thr(202/204)) and the STAT3 DNA-binding capacity were analysed by Western blotting and DNA-binding assays, respectively. Cell viability and invasiveness were assessed by the methylthiazole tetrazolium salt (MTS) and Matrigel assays. Enzymatic activity of matrix metalloproteinase (MMP)-2 and MMP-9 was investigated by zymography. OSM and LIF triggered phosphorylation of STAT3 and ERK1/2, followed by a significant increase in STAT3 DNA-binding activity in all tested cell lines. Stimulation with LIF but not OSM significantly enhanced invasion of ACH-3P and JEG-3 cells, but not HTR-8/SVneo or AC1-M59 cells. Similarly, STAT3 inhibition significantly decreased the invasiveness of only ACH-3P and JEG-3 cells concomitant with decreases in secreted MMP-2 and MMP-9. OSM shares with LIF the capacity to activate ERK1/2 and STAT3 pathways in all cell lines tested, but their resulting effects are dependent on cell type. This suggests that LIF and OSM may partially substitute for each other in case of deficiencies or therapeutic interventions.


Assuntos
Movimento Celular/efeitos dos fármacos , Fator Inibidor de Leucemia/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Oncostatina M/farmacologia , Fator de Transcrição STAT3/metabolismo , Trofoblastos/efeitos dos fármacos , Sítios de Ligação , Linhagem Celular Tumoral , DNA/metabolismo , Feminino , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Trofoblastos/enzimologia
16.
Int J Biochem Cell Biol ; 68: 187-96, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26320576

RESUMO

Trophoblast cells express a singular miRNA expression profile which varies during pregnancy and whose alteration may be associated with pregnancy complications. miR-21, a widely known oncomir, is highly expressed in human placenta but its role in regulating trophoblast cells remains unclear. The aim of this study was to investigate miR-21 functions and targets in HTR-8/SVneo immortalized trophoblast and JEG-3 choriocarcinoma cells, which are trophoblast cell models that differ in their cellular origin. Cells were transfected with miR-21-antagomir, -mimic or their respective controls. Following, cell proliferation (BrdU), migration (Transwell and scratch wound-healing assays), invasion (Matrigel assays) and apoptosis (flow cytometry, TUNEL assay and Western blotting) were assessed. Expression of the potential miR-21 targets phosphatase and tensin homolog (PTEN) and programmed cell death 4 (PDCD4) were analyzed by Western blotting. Inhibition of miR-21 decreased cell proliferation, migration, and invasion in JEG-3 and HTR-8/SVneo cells and additionally, induced apoptosis in JEG-3 cells. Silencing of miR-21 enhanced PDCD4 expression only in JEG-3 cells, and PTEN expression only in HTR-8/SVneo cells. Inhibition of miR-21 significantly increased phosphorylation of AKT in HTR-8/SVneo cells. In conclusion, miR-21 has cell-specific targets depending upon the origin of trophoblastic cells. Furthermore, miR-21 regulates major cellular processes including cell growth, migration, invasion and apoptosis suggesting that its impairment may lead to placental disorders.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Regulação da Expressão Gênica , MicroRNAs/genética , PTEN Fosfo-Hidrolase/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas de Ligação a RNA/genética , Trofoblastos/metabolismo , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Transformada , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Especificidade de Órgãos , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação , Gravidez , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Transfecção , Trofoblastos/citologia
17.
J Reprod Immunol ; 108: 48-55, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25817464

RESUMO

The development of the follicle and competent oocyte is highly coordinated, requiring interplay among several systems. These implicate endocrine, immune, and metabolic signals, intrafollicular paracrine factors from theca, mural, and cumulus granulosa cells, and the oocyte itself. Granulosa cells play a key role in their interaction. COV434 is one of the few human granulosa cell lines that can be used as an in vitro model for ovarian research. We aimed to evaluate the possible activation of the Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathway by IL-6-type cytokines leukemia inhibitory factor (LIF) and oncostatin M (OSM) in COV434 cells. Expression of GP130 (glycoprotein 130), STAT3 (signal transducer and activators of transcription 3), PIAS3 (protein inhibitor of activated STAT 3), and SOCS3 (suppressor of cytokine signaling 3) genes after stimulation with LIF or OSM was assessed using RT-qPCR (real-time PCR). GP130 transcripts were significantly upregulated after incubation with LIF or OSM for 24h. Expression of the STAT3 gene was stimulated only after incubation with LIF, but not OSM. SOCS3 showed significant upregulation for all time periods and the levels of PIAS3 were initially down- and after 24h upregulated. Furthermore, the major signaling components of the JAK/STAT pathway, GP130 and STAT3, and the kinase activation patterns of STAT3, were examined at protein level. We found constitutive protein expression for GP130, STAT3, pSTAT3(ser727) and upregulation of pSTAT3(tyr705) by LIF and OSM. Our results demonstrate the activation of the JAK/STAT pathway by LIF and OSM in human granulosa cells.


Assuntos
Receptor gp130 de Citocina/metabolismo , Células da Granulosa/imunologia , Chaperonas Moleculares/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Comunicação Celular , Linhagem Celular , Receptor gp130 de Citocina/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Janus Quinases/metabolismo , Fator Inibidor de Leucemia/imunologia , Chaperonas Moleculares/genética , Oncostatina M/imunologia , Gravidez , Proteínas Inibidoras de STAT Ativados/genética , Transdução de Sinais/imunologia , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/genética
18.
ScientificWorldJournal ; 2013: 259845, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24288470

RESUMO

Invasiveness of trophoblast and choriocarcinoma cells is in part mediated via leukemia inhibitory factor- (LIF-) induced activation of signal transducer and activator of transcription 3 (STAT3). The regulation of STAT3 phosphorylation at its ser727 binding site, possible crosstalk with intracellular MAPK signaling, and their functional implications are the object of the present investigation. JEG-3 choriocarcinoma cells were cultured in presence/absence of LIF and the specific ERK1/2 inhibitor (U0126). Phosphorylation of signaling molecules (p-STAT3 (ser727 and tyr705) and p-ERK1/2 (thr 202/tyr 204)) was assessed per Western blot. Immunocytochemistry confirmed results, but also pinpointed the location of phosphorylated signaling molecules. STAT3 DNA-binding capacity was studied with a colorimetric ELISA-based assay. Cell viability and invasion capability were assessed by MTS and Matrigel assays. Our results demonstrate that LIF-induced phosphorylation of STAT3 (tyr705 and ser727) is significantly increased after blocking ERK1/2. STAT3 DNA-binding capacity and cell invasiveness are enhanced after LIF stimulation and ERK1/2 blockage. In contrast, proliferation is enhanced by LIF but reduced after ERK1/2 inhibition. The findings herein show that blocking ERK1/2 increases LIF-induced STAT3 phosphorylation and STAT3 DNA-binding capacity by an intranuclear crosstalk, which leads to enhanced invasiveness and reduced proliferation.


Assuntos
Proliferação de Células , Coriocarcinoma/metabolismo , Fator Inibidor de Leucemia/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fator de Transcrição STAT3/metabolismo , Butadienos/farmacologia , Linhagem Celular Tumoral , Coriocarcinoma/patologia , Humanos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Invasividade Neoplásica , Nitrilas/farmacologia , Fosforilação , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia
19.
J Reprod Immunol ; 97(1): 51-61, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23432872

RESUMO

MicroRNAs (miRNAs) are expressed in the placenta and can be detected in maternal plasma. An increasing number of studies have been published on the cellular origin, distribution and function of miRNAs in pregnancy. Specific miRNA profiles have been described for the placenta, maternal plasma and several pregnancy disorders. It has been observed that numerous miRNAs, which are predominantly or exclusively expressed during pregnancy, are clustered in chromosomal regions, may be controlled by the same promoters, may have similar seed regions and targets, and work synergistically. The three most eminent clusters are the chromosome 19 miRNA cluster (C19MC), C14MC and miR-371-3 cluster, which is also localized on chromosome 19. MiRNA members of these clusters are not only detected in the placenta, but also in other compartments, e.g. in serum where they have the potential to become novel biomarkers of pregnancy disorders. Additionally, some members are also expressed in a variety of tumors. Antagonism of selected miRNAs or their targets may lead to novel strategies for the development of new drug classes in pregnancy disorders or other diseases. This review summarizes current knowledge on the pregnancy-related miRNA clusters - the C19MC, C14MC and miR-371-3 cluster - in regard to pregnancy and also other, mostly pathological circumstances.


Assuntos
Cromossomos Humanos Par 14/genética , Cromossomos Humanos Par 19/genética , MicroRNAs/genética , Família Multigênica/genética , Placenta/metabolismo , Complicações na Gravidez/genética , Animais , Feminino , Humanos , Gravidez/genética
20.
PLoS One ; 7(1): e29745, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22235337

RESUMO

This study examines the IL-11 mediated activation of downstream signaling and expression of effector molecules to resolve the controversies associated with the IL-11 mediated regulation of the invasiveness of two commonly used trophoblastic cell models viz. JEG-3 and HTR-8/SVneo cells. It has been reported that IL-11 increases the invasiveness of JEG-3 cells while, reduces the invasiveness of HTR-8/SVneo cells. Invasion assay performed simultaneously for both the cell lines confirmed the above findings. In addition, HTR-8/SVneo cells showed a higher basal invasiveness than JEG-3 cells. Western blot showed the IL-11 mediated activation of STAT3(tyr705) and STAT1(tyr701) in both the cell lines. However, IL-11 activated the ERK1/2 phosphorylation in JEG-3 cells but, inhibited it in HTR-8/SVneo cells. Within 10 min of IL-11 treatment, p-STAT3(tyr705) was localized inside the nucleus of both the cell lines but, there was enhanced co-localization of protein inhibitor of activated STAT1/3 (PIAS1/3) and p-STAT3(tyr705) in HTR-8/SVneo cells and not in JEG-3 cells. This could be reason for the poor responsiveness of STAT3 responsive genes like mucin 1 (MUC1) in HTR-8/SVneo cells and not in JEG-3 cells. Further, microarray analysis of the IL-11 treated cells revealed differential responsiveness of JEG-3 as compared to HTR-8/SVneo cells. Several family of genes like activator protein-1 (AP-1) transcription factors (Jun and Fos), mucin-type molecules, MMP23B etc showed enhanced expression in IL-11 treated JEG-3 cells while, there was no response or decrease in their expression in IL-11 treated HTR-8/SVneo cells. Expression of these molecules was confirmed by quantitative RT-PCR. In addition, HTR-8/SVneo cells also showed a significant decrease in the expression of MMP2, MMP3 and MMP9 upon IL-11 treatment. Hence, IL-11 mediated differential activation of signaling and expression of effector molecules is responsible for the differential invasive response of JEG-3 and HTR-8/SVneo cells.


Assuntos
Interleucina-11/farmacologia , Metaloproteinases da Matriz/metabolismo , Mucinas/metabolismo , Fator de Transcrição AP-1/metabolismo , Trofoblastos/citologia , Trofoblastos/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Implantação do Embrião/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Inativação Gênica , Humanos , Integrinas/genética , Integrinas/metabolismo , Metaloproteinases da Matriz/deficiência , Metaloproteinases da Matriz/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Mucina-1/genética , Mucina-1/metabolismo , Fosfoproteínas/metabolismo , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Inibidores Teciduais de Metaloproteinases/genética , Inibidores Teciduais de Metaloproteinases/metabolismo , Trofoblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA