Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genetics ; 227(2)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38606935

RESUMO

Hsp90 is an abundant and essential molecular chaperone that mediates the folding and activation of client proteins in a nucleotide-dependent cycle. Hsp90 inhibition directly or indirectly impacts the function of 10-15% of all proteins due to degradation of client proteins or indirect downstream effects. Due to its role in chaperoning oncogenic proteins, Hsp90 is an important drug target. However, compounds that occupy the ATP-binding pocket and broadly inhibit function have not achieved widespread use due to negative effects. More selective inhibitors are needed; however, it is unclear how to achieve selective inhibition. We conducted a quantitative proteomic analysis of soluble proteins in yeast strains expressing wild-type Hsp90 or mutants that disrupt different steps in the client folding pathway. Out of 2,482 proteins in our sample set (approximately 38% of yeast proteins), we observed statistically significant changes in abundance of 350 (14%) of those proteins (log2 fold change ≥ 1.5). Of these, 257/350 (∼73%) with the strongest differences in abundance were previously connected to Hsp90 function. Principal component analysis of the entire dataset revealed that the effects of the mutants could be separated into 3 primary clusters. As evidence that Hsp90 mutants affect different pools of clients, simultaneous co-expression of 2 mutants in different clusters restored wild-type growth. Our data suggest that the ability of Hsp90 to sample a wide range of conformations allows the chaperone to mediate folding of a broad array of clients and that disruption of conformational flexibility results in client defects dependent on those states.


Assuntos
Proteínas de Choque Térmico HSP90 , Proteômica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteômica/métodos , Mutação , Dobramento de Proteína , Proteoma/metabolismo
2.
Mol Biol Cell ; 35(4): ar53, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38381577

RESUMO

Cells employ multiple systems to maintain homeostasis when experiencing environmental stress. For example, the folding of nascent polypeptides is exquisitely sensitive to proteotoxic stressors including heat, pH, and oxidative stress, and is safeguarded by a network of protein chaperones that concentrate potentially toxic misfolded proteins into transient assemblies to promote folding or degradation. The redox environment itself is buffered by both cytosolic and organellar thioredoxin and glutathione pathways. How these systems are linked is poorly understood. Here, we determine that specific disruption of the cytosolic thioredoxin system resulted in constitutive activation of the heat shock response in Saccharomyces cerevisiae and accumulation of the sequestrase Hsp42 into an exaggerated and persistent juxtanuclear quality control (JUNQ) compartment. Terminally misfolded proteins also accumulated in this compartment in thioredoxin reductase (TRR1)-deficient cells, despite apparently normal formation and dissolution of transient cytoplasmic quality control (CytoQ) bodies during heat shock. Notably, cells lacking TRR1 and HSP42 exhibited severe synthetic slow growth exacerbated by oxidative stress, signifying a critical role for Hsp42 under redox-challenged conditions. Finally, we demonstrated that Hsp42 localization patterns in trr1∆ cells mimic those observed in chronically aging and glucose-starved cells, linking nutrient depletion and redox imbalance with management of misfolded proteins via a process of long-term sequestration.


Assuntos
Proteínas de Choque Térmico , Proteínas de Saccharomyces cerevisiae , Proteínas de Choque Térmico/metabolismo , Oxirredução , Dobramento de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Tiorredoxinas/metabolismo
3.
bioRxiv ; 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37425817

RESUMO

Cells employ multiple systems to maintain homeostasis when experiencing environmental stress. For example, the folding of nascent polypeptides is exquisitely sensitive to proteotoxic stressors including heat, pH and oxidative stress, and is safeguarded by a network of protein chaperones that concentrate potentially toxic misfolded proteins into transient assemblies to promote folding or degradation. The redox environment itself is buffered by both cytosolic and organellar thioredoxin and glutathione pathways. How these systems are linked is poorly understood. Here, we determine that specific disruption of the cytosolic thioredoxin system resulted in constitutive activation of the heat shock response in Saccharomyces cerevisiae and accumulation of the sequestrase Hsp42 into an exaggerated and persistent juxtanuclear quality control (JUNQ) compartment. Terminally misfolded proteins also accumulated in this compartment in thioredoxin reductase (TRR1)-deficient cells, despite apparently normal formation and dissolution of transient cytoplasmic quality control (CytoQ) bodies during heat shock. Notably, cells lacking TRR1 and HSP42 exhibited severe synthetic slow growth exacerbated by oxidative stress, signifying a critical role for Hsp42 under redox-challenged conditions. Finally, we demonstrated that Hsp42 localization patterns in trr1∆ cells mimic those observed in chronically aging and glucose-starved cells, linking nutrient depletion and redox imbalance with management of misfolded proteins via a mechanism of long-term sequestration.

4.
J Biol Chem ; 298(10): 102424, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030825

RESUMO

Neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's diseases affect millions of Americans every year. One factor linked to the formation of aggregates associated with these diseases is damage sustained to proteins by oxidative stress. Management of protein misfolding by the ubiquitous Hsp70 chaperone family can be modulated by modification of two key cysteines in the ATPase domain by oxidizing or thiol-modifying compounds. To investigate the biological consequences of cysteine modification on the Hsp70 Ssa1 in budding yeast, we generated cysteine null (cysteine to serine) and oxidomimetic (cysteine to aspartic acid) mutant variants of both C264 and C303 and demonstrate reduced ATP binding, hydrolysis, and protein folding properties in both the oxidomimetic and hydrogen peroxide-treated Ssa1. In contrast, cysteine nullification rendered Ssa1 insensitive to oxidative inhibition. Additionally, we determined the oxidomimetic ssa1-2CD (C264D, C303D) allele was unable to function as the sole Ssa1 isoform in yeast cells and also exhibited dominant negative effects on cell growth and viability. Ssa1 binds to and represses Hsf1, the major transcription factor controlling the heat shock response, and we found the oxidomimetic Ssa1 failed to stably interact with Hsf1, resulting in constitutive activation of the heat shock response. Consistent with our in vitro findings, ssa1-2CD cells were compromised for de novo folding, post-stress protein refolding, and in regulated degradation of a model terminally misfolded protein. Together, these findings pinpoint Hsp70 as a key link between oxidative stress and proteostasis, information critical to understanding cytoprotective systems that prevent and manage cellular insults underlying complex disease states.


Assuntos
Adenosina Trifosfatases , Proteínas de Ligação a DNA , Proteínas de Choque Térmico HSP70 , Proteínas de Choque Térmico , Proteostase , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Cisteína/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Oxirredução , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
J Biol Chem ; 296: 100567, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33753171

RESUMO

Molecular chaperones maintain proteostasis by ensuring the proper folding of polypeptides. Loss of proteostasis has been linked to numerous neurodegenerative disorders including Alzheimer's, Parkinson's, and Huntington's disease. Hsp110 is related to the canonical Hsp70 class of protein-folding molecular chaperones and interacts with Hsp70 as a nucleotide exchange factor (NEF). In addition to its NEF activity, Hsp110 possesses an Hsp70-like substrate-binding domain (SBD) whose biological roles remain undefined. Previous work in Drosophila melanogaster has implicated the sole Hsp110 gene (Hsc70cb) in proteinopathic neurodegeneration. We hypothesize that in addition to its role as an Hsp70 NEF, Drosophila Hsp110 may function as a protective protein "holdase," preventing the aggregation of unfolded polypeptides via the SBD-ß subdomain. We demonstrate for the first time that Drosophila Hsp110 effectively prevents aggregation of the model substrate citrate synthase. We also report the discovery of a redundant and heretofore unknown potent holdase capacity in a 138-amino-acid region of Hsp110 carboxyl terminal to both SBD-ß and SBD-α (henceforth called the C-terminal extension). This sequence is highly conserved in metazoan Hsp110 genes, completely absent from fungal representatives, and is computationally predicted to contain an intrinsically disordered region (IDR). We demonstrate that this IDR sequence within the human Hsp110s, Apg-1 and Hsp105α, inhibits the formation of amyloid Aß-42 and α-synuclein fibrils in vitro but cannot mediate fibril disassembly. Together these findings establish capacity for metazoan Hsp110 chaperones to suppress both general protein aggregation and amyloidogenesis, raising the possibility of exploitation of this IDR for therapeutic benefit.


Assuntos
Amiloide/química , Proteínas de Choque Térmico HSP110/química , Proteínas de Choque Térmico HSP110/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Agregados Proteicos , Animais
6.
J Biol Chem ; 294(32): 12191-12202, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31239354

RESUMO

Protein homeostasis and cellular fitness in the presence of proteotoxic stress is promoted by heat shock factor 1 (Hsf1), which controls basal and stress-induced expression of molecular chaperones and other targets. The major heat shock proteins and molecular chaperones Hsp70 and Hsp90, in turn, participate in a negative feedback loop that ensures appropriate coordination of the heat shock response with environmental conditions. Features of this regulatory circuit in the budding yeast Saccharomyces cerevisiae have been recently defined, most notably regarding direct interaction between Hsf1 and the constitutively expressed Hsp70 protein Ssa1. Here, we sought to further examine the Ssa1/Hsf1 regulation. We found that Ssa1 interacts independently with both the previously defined CE2 site in the Hsf1 C-terminal transcriptional activation domain and with an additional site that we identified within the N-terminal activation domain. Consistent with both sites bearing a recognition signature for Hsp70, we demonstrate that Ssa1 contacts Hsf1 via its substrate-binding domain and that abolishing either regulatory site results in loss of Ssa1 interaction. Removing Hsp70 regulation of Hsf1 globally dysregulated Hsf1 transcriptional activity, with synergistic effects on both gene expression and cellular fitness when both sites are disrupted together. Finally, we report that Hsp70 interacts with both transcriptional activation domains of Hsf1 in the related yeast Lachancea kluyveri Our findings indicate that Hsf1 transcriptional activity is tightly regulated to ensure cellular fitness and that a general and conserved Hsp70-HSF1 feedback loop regulates cellular proteostasis in yeast.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma , Adenosina Trifosfatases/química , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico , Ligação Proteica , Domínios Proteicos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato , Fatores de Transcrição/química , Fatores de Transcrição/genética
7.
Mol Biol Cell ; 30(5): 554-565, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30601716

RESUMO

The eukaryotic cytosolic proteome is vulnerable to changes in proteostatic and redox balance caused by temperature, pH, oxidants, and xenobiotics. Cysteine-containing proteins are especially at risk, as the thiol side chain is subject to oxidation, adduction, and chelation by thiol-reactive compounds. The thiol-chelating heavy metal cadmium is a highly toxic environmental pollutant demonstrated to induce the heat shock response and recruit protein chaperones to sites of presumed protein aggregation in the budding yeast Saccharomyces cerevisiae. However, endogenous targets of cadmium toxicity responsible for these outcomes are largely unknown. Using fluorescent protein fusion to cytosolic proteins with known redox-active cysteines, we identified the yeast glycolytic enzyme triose phosphate isomerase as being aggregation-prone in response to cadmium and to glucose depletion in chronologically aging cultures. Cadmium-induced aggregation was limited to newly synthesized Tpi1 that was recruited to foci containing the disaggregase Hsp104 and the peroxiredoxin chaperone Tsa1. Misfolding of nascent Tpi1 in response to both cadmium and glucose-depletion stress required both cysteines, implying that thiol status in this protein directly influences folding. We also demonstrate that cadmium proteotoxicity is conserved between yeast and human cells, as HEK293 and HCT116 cell lines exhibit recruitment of the protein chaperone Hsp70 to visible foci. Moreover, human TPI, mutations in which cause a glycolytic deficiency syndrome, also forms aggregates in response to cadmium treatment, suggesting that this conserved enzyme is folding-labile and may be a useful endogenous model for investigating thiol-specific proteotoxicity.


Assuntos
Glicólise/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Estresse Fisiológico/efeitos dos fármacos , Compostos de Sulfidrila/farmacologia , Triose-Fosfato Isomerase/metabolismo , Sequência de Aminoácidos , Cádmio/toxicidade , Cisteína/metabolismo , Glucose/deficiência , Proteínas de Fluorescência Verde/metabolismo , Células HCT116 , Células HEK293 , Humanos , Chaperonas Moleculares/metabolismo , Dobramento de Proteína/efeitos dos fármacos , Triose-Fosfato Isomerase/química
8.
Mol Biol Cell ; 28(15): 2066-2075, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28539411

RESUMO

The highly conserved heat shock protein 70 (Hsp70) is a ubiquitous molecular chaperone essential for maintaining cellular protein homeostasis. The related protein Hsp110 (Sse1/Sse2 in Saccharomyces cerevisiae) functions as a nucleotide exchange factor (NEF) to regulate the protein folding activity of Hsp70. Hsp110/Sse1 also can prevent protein aggregation in vitro via its substrate-binding domain (SBD), but the cellular roles of this "holdase" activity are poorly defined. We generated and characterized an Sse1 mutant that separates, for the first time, its nucleotide exchange and substrate-binding functions. Sse1sbd retains nucleotide-binding and nucleotide exchange activities while exhibiting severe deficiencies in chaperone holdase activity for unfolded polypeptides. In contrast, we observed no effect of the SBD mutation in reconstituted disaggregation or refolding reactions in vitro. In vivo, Sse1sbd successfully heterodimerized with the yeast cytosolic Hsp70s Ssa and Ssb and promoted normal growth, with the exception of sensitivity to prolonged heat but not other proteotoxic stress. Moreover, Sse1sbd was fully competent to support Hsp90-dependent signaling through heterologously expressed glucocorticoid receptor and degradation of a permanently misfolded protein, two previously defined roles for Sse1. We conclude that despite conservation among eukaryotic homologues, chaperone holdase activity is not an obligate function in the Hsp110 family.


Assuntos
Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Endonucleases/metabolismo , Proteínas de Choque Térmico HSP110/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Mutação , Nucleotídeos/metabolismo , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais
9.
Free Radic Biol Med ; 101: 356-366, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27816612

RESUMO

A broad range of redox-regulated proteins undergo reversible disulfide bond formation on oxidation-prone cysteine residues. Heightened reactivity of the thiol groups in these cysteines also increases susceptibility to modification by organic electrophiles, a property that can be exploited in the study of redox networks. Here, we explored whether divinyl sulfone (DVSF), a thiol-reactive bifunctional electrophile, cross-links oxidant-sensitive proteins to their putative redox partners in cells. To test this idea, previously identified oxidant targets involved in oxidant defense (namely, peroxiredoxins, methionine sulfoxide reductases, sulfiredoxin, and glutathione peroxidases), metabolism, and proteostasis were monitored for cross-link formation following treatment of Saccharomyces cerevisiae with DVSF. Several proteins screened, including multiple oxidant defense proteins, underwent intermolecular and/or intramolecular cross-linking in response to DVSF. Specific redox-active cysteines within a subset of DVSF targets were found to influence cross-linking; in addition, DVSF-mediated cross-linking of its targets was impaired in cells first exposed to oxidants. Since cross-linking appeared to involve redox-active cysteines in these proteins, we examined whether potential redox partners became cross-linked to them upon DVSF treatment. Specifically, we found that several substrates of thioredoxins were cross-linked to the cytosolic thioredoxin Trx2 in cells treated with DVSF. However, other DVSF targets, like the peroxiredoxin Ahp1, principally formed intra-protein cross-links upon DVSF treatment. Moreover, additional protein targets, including several known to undergo S-glutathionylation, were conjugated via DVSF to glutathione. Our results indicate that DVSF is of potential use as a chemical tool for irreversibly trapping and discovering thiol-based redox partnerships within cells.


Assuntos
Reagentes de Ligações Cruzadas/química , Dissulfetos/química , Saccharomyces cerevisiae/química , Compostos de Sulfidrila/química , Sulfonas/química , Glutationa Peroxidase/química , Metionina Sulfóxido Redutases/química , Oxidantes/química , Oxidantes/farmacologia , Oxirredução , Estresse Oxidativo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Peroxirredoxinas/química , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/química , Tiorredoxinas/química , terc-Butil Hidroperóxido/química , terc-Butil Hidroperóxido/farmacologia
10.
Cell Stress Chaperones ; 19(6): 753-61, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25199949

RESUMO

A collaborative workshop dedicated to the discussion of heat shock factors in stress response, development, and disease was held on April 22-24, 2014 at the Université Paris Diderot in Paris, France. Recent years have witnessed an explosion of interest in these highly conserved transcription factors, with biological roles ranging from environmental sensing to human development and cancer.


Assuntos
Pesquisa Biomédica , Transtornos de Estresse por Calor/metabolismo , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Fatores de Transcrição/metabolismo , Animais , Regulação da Expressão Gênica , Transtornos de Estresse por Calor/genética , Transtornos de Estresse por Calor/fisiopatologia , Proteínas de Choque Térmico/genética , Humanos , Transdução de Sinais , Fatores de Transcrição/genética
11.
Chem Res Toxicol ; 26(3): 490-7, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-23414292

RESUMO

Thioredoxin protects cells against oxidative damage by reducing disulfide bonds in improperly oxidized proteins. Previously, we found that the baker's yeast cytosolic thioredoxin Trx2 undergoes cross-linking to form several protein-protein complexes in cells treated with the bifunctional electrophile divinyl sulfone (DVSF). Here, we report that the peroxiredoxin Tsa1 and the thioredoxin reductase Trr1, both of which function in a redox relay network with thioredoxin, become cross-linked in complexes with Trx2 upon DVSF treatment. Treatment of yeast with other bifunctional electrophiles, including diethyl acetylenedicarboxylate (DAD), mechlorethamine (HN2), and 1,2,3,4-diepoxybutane (DEB), resulted in the formation of similar cross-linked complexes. Cross-linking of Trx2 and Tsa1 to other proteins by DVSF and DAD is dependent on modification of the active site Cys residues within these proteins. In addition, the human cytosolic thioredoxin, cytosolic thioredoxin reductase, and peroxiredoxin 2 form cross-linked complexes to other proteins in the presence of DVSF, although each protein shows different susceptibilities to modification by DAD, HN2, and DEB. Taken together, our results indicate that bifunctional electrophiles potentially disrupt redox homeostasis in yeast and human cells by forming cross-linked complexes between thioredoxins and their redox partners.


Assuntos
Reagentes de Ligações Cruzadas/metabolismo , Peroxidases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sulfonas/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/metabolismo , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/química , Humanos , Oxirredução , Peroxidases/química , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Sulfonas/química , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxinas/química
12.
Mol Biol Cell ; 23(17): 3290-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22809627

RESUMO

The heat shock transcription factor HSF1 governs the response to heat shock, oxidative stresses, and xenobiotics through unknown mechanisms. We demonstrate that diverse thiol-reactive molecules potently activate budding yeast Hsf1. Hsf1 activation by thiol-reactive compounds is not consistent with the stresses of misfolding of cytoplasmic proteins or cytotoxicity. Instead, we demonstrate that the Hsp70 chaperone Ssa1, which represses Hsf1 in the absence of stress, is hypersensitive to modification by a thiol-reactive probe. Strikingly, mutation of two conserved cysteine residues to serine in Ssa1 rendered cells insensitive to Hsf1 activation and subsequently induced thermotolerance by thiol-reactive compounds, but not by heat shock. Conversely, substitution with the sulfinic acid mimic aspartic acid resulted in constitutive Hsf1 activation. Cysteine 303, located within the nucleotide-binding domain, was found to be modified in vivo by a model organic electrophile, demonstrating that Ssa1 is a direct target for thiol-reactive molecules through adduct formation. These findings demonstrate that Hsp70 is a proximal sensor for Hsf1-mediated cytoprotection and can discriminate between two distinct environmental stressors.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Compostos de Sulfidrila/farmacologia , Fatores de Transcrição/metabolismo , Triterpenos/farmacologia , Ácido Aspártico , Sítios de Ligação , Diamida/farmacologia , Ditiotreitol/farmacologia , Peróxido de Hidrogênio/farmacologia , Maleatos/farmacologia , Estresse Oxidativo , Triterpenos Pentacíclicos , Resposta a Proteínas não Dobradas
13.
Eukaryot Cell ; 11(8): 1003-11, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22635919

RESUMO

Heat shock protein 70 (Hsp70) is a highly conserved molecular chaperone that assists in the folding of nascent chains and the repair of unfolded proteins through iterative cycles of ATP binding, hydrolysis, and nucleotide exchange tightly coupled to polypeptide binding and release. Cochaperones, including nucleotide exchange factors (NEFs), modulate the rate of ADP/ATP exchange and serve to recruit Hsp70 to distinct processes or locations. Among three nonrelated cytosolic NEFs in Saccharomyces cerevisiae, the Bag-1 homolog SNL1 is unique in being tethered to the endoplasmic reticulum (ER) membrane. We demonstrate here a novel physical association between Snl1 and the intact ribosome. This interaction is both independent of and concurrent with binding to Hsp70 and is not dependent on membrane localization. The ribosome binding site is identified as a short lysine-rich motif within the amino terminus of the Snl1 BAG domain distinct from the Hsp70 interaction region. Additionally, we demonstrate a ribosome association with the Candida albicans Snl1 homolog and localize this putative NEF to a perinuclear/ER membrane, suggesting functional conservation in fungal BAG domain-containing proteins. We therefore propose that the Snl1 family of NEFs serves a previously unknown role in fungal protein biogenesis based on the coincident recruitment of ribosomes and Hsp70 to the ER membrane.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Candida albicans/metabolismo , Retículo Endoplasmático/metabolismo , Deleção de Genes , Proteínas de Choque Térmico HSP70/metabolismo , Lisina/análise , Proteínas de Membrana/genética , Chaperonas Moleculares/genética , Domínios e Motivos de Interação entre Proteínas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
14.
Chem Res Toxicol ; 24(9): 1457-9, 2011 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-21812477

RESUMO

Previously, we determined that diethyl acetylenedicarboxylate (DAD), a protein cross-linker, was significantly more toxic than analogous monofunctional electrophiles. We hypothesized that other protein cross-linkers enhance toxicity similarly. In agreement with this hypothesis, the bifunctional electrophile divinyl sulfone (DVSF) was 6-fold more toxic than ethyl vinyl sulfone (EVSF) in colorectal carcinoma cells and greater than 10-fold more toxic in Saccharomyces cerevisiae. DVSF and DAD caused oligomerization of yeast thioredoxin 2 (Trx2p) in vitro and promoted Trx2p cross-linking to other proteins in yeast at cytotoxic doses. Our results suggest that protein cross-linking is considerably more detrimental to cellular homeostasis than simple alkylation.


Assuntos
Alcinos/toxicidade , Reagentes de Ligações Cruzadas/toxicidade , Citotoxinas/toxicidade , Proteínas/química , Sulfonas/toxicidade , Alquilação , Linhagem Celular Tumoral , Humanos , Saccharomyces cerevisiae/citologia
15.
Mol Biol Cell ; 19(3): 1104-12, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18199679

RESUMO

Stress response pathways allow cells to sense and respond to environmental changes and adverse pathophysiological states. Pharmacological modulation of cellular stress pathways has implications in the treatment of human diseases, including neurodegenerative disorders, cardiovascular disease, and cancer. The quinone methide triterpene celastrol, derived from a traditional Chinese medicinal herb, has numerous pharmacological properties, and it is a potent activator of the mammalian heat shock transcription factor HSF1. However, its mode of action and spectrum of cellular targets are poorly understood. We show here that celastrol activates Hsf1 in Saccharomyces cerevisiae at a similar effective concentration seen in mammalian cells. Transcriptional profiling revealed that celastrol treatment induces a battery of oxidant defense genes in addition to heat shock genes. Celastrol activated the yeast Yap1 oxidant defense transcription factor via the carboxy-terminal redox center that responds to electrophilic compounds. Antioxidant response genes were likewise induced in mammalian cells, demonstrating that the activation of two major cell stress pathways by celastrol is conserved. We report that celastrol's biological effects, including inhibition of glucocorticoid receptor activity, can be blocked by the addition of excess free thiol, suggesting a chemical mechanism for biological activity based on modification of key reactive thiols by this natural product.


Assuntos
Antioxidantes/metabolismo , Produtos Biológicos/farmacologia , Resposta ao Choque Térmico/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Compostos de Sulfidrila/farmacologia , Transcrição Gênica/efeitos dos fármacos , Triterpenos/farmacologia , Adaptação Fisiológica/efeitos dos fármacos , Produtos Biológicos/química , Linhagem Celular Tumoral , Citoproteção/efeitos dos fármacos , Citoproteção/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico/metabolismo , Humanos , Modelos Biológicos , Oxidantes/farmacologia , Triterpenos Pentacíclicos , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Triterpenos/química
16.
Genetics ; 177(3): 1583-93, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18039878

RESUMO

Yeast prions are a group of non-Mendelian genetic elements transmitted as altered and self-propagating conformations. Extensive studies in the last decade have provided valuable information on the mechanisms responsible for yeast prion propagation. How yeast prions are formed de novo and what cellular factors are required for determining prion "strains" or variants--a single polypeptide capable of existing in multiple conformations to result in distinct heritable phenotypes--continue to defy our understanding. We report here that Sse1, the yeast ortholog of the mammalian heat-shock protein 110 (Hsp110) and a nucleotide exchange factor for Hsp70 proteins, plays an important role in regulating [PSI+] de novo formation and variant determination. Overproduction of the Sse1 chaperone dramatically enhanced [PSI+] formation whereas deletion of SSE1 severely inhibited it. Only an unstable weak [PSI+] variant was formed in SSE1 disrupted cells whereas [PSI+] variants ranging from very strong to very weak were formed in isogenic wild-type cells under identical conditions. Thus, Sse1 is essential for the generation of multiple [PSI+] variants. Mutational analysis further demonstrated that the physical association of Sse1 with Hsp70 but not the ATP hydrolysis activity of Sse1 is required for the formation of multiple [PSI+] variants. Our findings establish a novel role for Sse1 in [PSI+] de novo formation and variant determination, implying that the mammalian Hsp110 may likewise be involved in the etiology of protein-folding diseases.


Assuntos
Proteínas de Choque Térmico HSP110/genética , Proteínas de Choque Térmico HSP110/metabolismo , Príons/biossíntese , Príons/genética , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Primers do DNA/genética , DNA Fúngico/genética , Genes Fúngicos , Variação Genética , Proteínas de Choque Térmico HSP70 , Mutação , Fatores de Terminação de Peptídeos , Plasmídeos/genética
17.
Ann N Y Acad Sci ; 1113: 1-14, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17513460

RESUMO

The Hsp70 chaperone is arguably the most studied member of the heat shock protein family, a legacy traced back to the early days of phage genetics. However, much still remains to be learned about this essential protein-folding machine. Its involvement in a number of human pathologies, ranging from cancer to protein aggregation diseases, underscores the need for a comprehensive understanding of the myriad cellular roles Hsp70 plays and the outstanding open questions. This article will explore several exciting avenues of research into the function and biology of the chaperone. Analysis of the many eukaryotic Hsp70 isoforms has demonstrated distinct functional roles for some Hsp70 members, to the point of transition from a protein "foldase" to a chaperone cofactor. New insights gained from structural studies have unveiled a likely model for interdomain communication and thus regulation of substrate binding and processing. Advances in small molecule modulation of Hsp70 activity are likely to have significant clinical impact. There is also a growing realization that Hsp70 participates in distinct functional networks in partnership with other protein chaperones. The field is thus at an exciting time when the substantial successes of the past have provided a solid framework that will be used to fuel both discovery and application--Hsp70, from molecule to man.


Assuntos
Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/fisiologia , Família Multigênica , Animais , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos
18.
Biochemistry ; 45(50): 15075-84, 2006 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-17154545

RESUMO

SSE1 and SSE2 encode the essential yeast members of the Hsp70-related Hsp110 molecular chaperone family. Both mammalian Hsp110 and the Sse proteins functionally interact with cognate cytosolic Hsp70s as nucleotide exchange factors. We demonstrate here that Sse1 forms high-affinity (Kd approximately 10-8 M) heterodimeric complexes with both yeast Ssa and mammalian Hsp70 chaperones and that binding of ATP to Sse1 is required for binding to Hsp70s. Sse1.Hsp70 heterodimerization confers resistance to exogenously added protease, indicative of conformational changes in Sse1 resulting in a more compact structure. The nucleotide binding domains of both Sse1/2 and the Hsp70s dictate interaction specificity and are sufficient for mediating heterodimerization with no discernible contribution from the peptide binding domains. In support of a strongly conserved functional interaction between Hsp110 and Hsp70, Sse1 is shown to associate with and promote nucleotide exchange on human Hsp70. Nucleotide exchange activity by Sse1 is physiologically significant, as deletion of both SSE1 and the Ssa ATPase stimulatory protein YDJ1 is synthetically lethal. The Hsp110 family must therefore be considered an essential component of Hsp70 chaperone biology in the eukaryotic cell.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Choque Térmico HSP110/química , Proteínas de Choque Térmico HSP70/química , Complexos Multiproteicos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Trifosfato de Adenosina/metabolismo , Dimerização , Proteínas de Choque Térmico HSP110/genética , Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade
19.
J Biol Chem ; 280(50): 41262-9, 2005 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-16221677

RESUMO

There is growing evidence that members of the extended Hsp70 family of molecular chaperones, including the Hsp110 and Grp170 subgroups, collaborate in vivo to carry out essential cellular processes. However, relatively little is known regarding the interactions and cellular functions of Sse1, the yeast Hsp110 homolog. Through co-immunoprecipitation analysis, we found that Sse1 forms heterodimeric complexes with the abundant cytosolic Hsp70s Ssa and Ssb in vivo. Furthermore, these complexes can be efficiently reconstituted in vitro using purified proteins. Binding of Ssa or Ssb to Sse1 was mutually exclusive. The ATPase domain of Sse1 was found to be critical for interaction as inactivating point mutations severely reduced interaction with Ssa and Ssb. Sse1 stimulated Ssa1 ATPase activity synergistically with the co-chaperone Ydj1, and stimulation required complex formation. Ssa1 is required for post-translational translocation of the yeast mating pheromone alpha-factor into the endoplasmic reticulum. Like ssa mutants, we demonstrate that sse1delta cells accumulate prepro-alpha-factor, but not the co-translationally imported protein Kar2, indicating that interaction between Sse1 and Ssa is functionally significant in vivo. These data suggest that the Hsp110 chaperone operates in concert with Hsp70 in yeast and that this collaboration is required for cellular Hsp70 functions.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Choque Térmico HSP110/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/química , Alelos , Citosol/metabolismo , Análise Mutacional de DNA , Proteínas de Ligação a DNA/metabolismo , Dimerização , Eletroforese em Gel de Poliacrilamida , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Immunoblotting , Imunoprecipitação , Chaperonas Moleculares/metabolismo , Mutação , Peptídeos/química , Plasmídeos/metabolismo , Mutação Puntual , Ligação Proteica , Biossíntese de Proteínas , Precursores de Proteínas/química , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/química , Transdução de Sinais , Transcrição Gênica
20.
Genetics ; 170(3): 1009-21, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15879503

RESUMO

The Sch9 protein kinase regulates Hsp90-dependent signal transduction activity in the budding yeast Saccharomyces cerevisiae. Hsp90 functions in concert with a number of cochaperones, including the Hsp110 homolog Sse1. In this report, we demonstrate a novel synthetic genetic interaction between SSE1 and SCH9. This interaction was observed specifically during growth at elevated temperature and was suppressed by decreased signaling through the protein kinase A (PKA) signal transduction pathway. Correspondingly, sse1Delta sch9Delta cells were shown by both genetic and biochemical approaches to have abnormally high levels of PKA activity and were less sensitive to modulation of PKA by glucose availability. Growth defects of an sse1Delta mutant were corrected by reducing PKA signaling through overexpression of negative regulators or growth on nonoptimal carbon sources. Hyperactivation of the PKA pathway through expression of a constitutive RAS2 allele likewise resulted in temperature-sensitive growth, suggesting that modulation of PKA activity during thermal stress is required for adaptation and viability. Together these results demonstrate that the Sse1 chaperone and the growth control kinase Sch9 independently contribute to regulation of PKA signaling.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Choque Térmico HSP110/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/genética , Northern Blotting , Regulação Fúngica da Expressão Gênica/genética , Glucose/metabolismo , Proteínas de Choque Térmico HSP70 , Fosforilação , Saccharomyces cerevisiae/genética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA