Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 18851, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344609

RESUMO

Tissue microarrays (TMAs) are commonly used for the rapid analysis of large numbers of tissue samples, often in morphological assessments but increasingly in spectroscopic analysis, where specific molecular markers are targeted via immunostaining. Here we report the use of an automated high-throughput system based on desorption electrospray ionization (DESI) mass spectrometry (MS) for the rapid generation and online analysis of high-density (6144 samples/array) TMAs, at rates better than 1 sample/second. Direct open-air analysis of tissue samples (hundreds of nanograms) not subjected to prior preparation, plus the ability to provide molecular characterization by tandem mass spectrometry (MS/MS), make this experiment versatile and applicable to both targeted and untargeted analysis in a label-free manner. These capabilities are demonstrated in a proof-of-concept study of frozen brain tissue biopsies where we showcase (i) a targeted MS/MS application aimed at identification of isocitrate dehydrogenase mutation in glioma samples and (ii) an untargeted MS tissue type classification using lipid profiles and correlation with tumor cell percentage estimates from histopathology. The small sample sizes and large sample numbers accessible with this methodology make for a powerful analytical system that facilitates the identification of molecular markers for later use in intraoperative applications to guide precision surgeries and ultimately improve patient outcomes.


Assuntos
Glioma , Espectrometria de Massas por Ionização por Electrospray , Humanos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem , Glioma/patologia , Isocitrato Desidrogenase , Encéfalo/patologia
2.
Proc Natl Acad Sci U S A ; 119(42): e2212642119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36191178

RESUMO

Amide bond formation, the essential condensation reaction underlying peptide synthesis, is hindered in aqueous systems by the thermodynamic constraints associated with dehydration. This represents a key difficulty for the widely held view that prebiotic chemical evolution leading to the formation of the first biomolecules occurred in an oceanic environment. Recent evidence for the acceleration of chemical reactions at droplet interfaces led us to explore aqueous amino acid droplet chemistry. We report the formation of dipeptide isomer ions from free glycine or L-alanine at the air-water interface of aqueous microdroplets emanating from a single spray source (with or without applied potential) during their flight toward the inlet of a mass spectrometer. The proposed isomeric dipeptide ion is an oxazolidinone that takes fully covalent and ion-neutral complex forms. This structure is consistent with observed fragmentation patterns and its conversion to authentic dipeptide ions upon gentle collisions and for its formation from authentic dipeptides at ultra-low concentrations. It also rationalizes the results of droplet fusion experiments that show that the dipeptide isomer facilitates additional amide bond formation events, yielding authentic tri- through hexapeptides. We propose that the interface of aqueous microdroplets serves as a drying surface that shifts the equilibrium between free amino acids in favor of dehydration via stabilization of the dipeptide isomers. These findings offer a possible solution to the water paradox of biopolymer synthesis in prebiotic chemistry.


Assuntos
Aminoácidos , Oxazolidinonas , Alanina , Amidas , Aminoácidos/química , Biopolímeros , Desidratação , Dipeptídeos/química , Glicina , Humanos , Peptídeos/química , Água/química
3.
Mol Omics ; 18(6): 480-489, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35506630

RESUMO

The embryonic environment can modify cancer cell metabolism, and it is reported to induce the loss of tumorigenic properties and even affect the differentiation of cancer cells into normal tissues. The cellular mechanisms related to this remarkable phenomenon, which is likely mediated by cell-to-cell communication, have been previously investigated with particular focus on the proteins and genes involved. In this study we report the optimization and results of a straightforward in vitro system where mouse prostate carcinoma (RM-1) cells were co-cultured for three days with preimplantation mouse embryos or spiked with deproteinated extracts from mouse blastocysts. Compared to controls, both treatments induced RM-1 cells to increase the expression of the SOX-2 gene, which is related to cellular stemness, as well as altered their lipid composition. Specific acyl-carnitines, diacylglycerols, phosphatidylglycerols, phosphatidylinositols, phosphatidylserines and cardiolipins selected using an elastic net model discriminated the treated RM-1 cells from controls. Note that the tumorigenic properties of the treated RM-1 cells were not evaluated in this research. Due to the nature of the lipids impacted in the treated RM-1 cells, we hypothesize that mitochondrial metabolism has been altered, and that small molecules both secreted from and present within the embryos might be involved in the induction of metabolic changes observed in the RM-1 cells. These molecules, which could influence cancer cell metabolism, may still be unknown (i.e. structure, role).


Assuntos
Blastocisto , Desenvolvimento Embrionário , Animais , Blastocisto/metabolismo , Técnicas de Cocultura , Desenvolvimento Embrionário/genética , Lipídeos , Masculino , Camundongos
4.
ChemMedChem ; 17(9): e202200043, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35080134

RESUMO

The sulfotransferase (SULT) 2B1b, which catalyzes the sulfonation of 3ß-hydroxysteroids, has been identified as a potential target for prostate cancer treatment. However, a major limitation for SULT2B1b-targeted drug discovery is the lack of robust assays compatible with high-throughput screening and inconsistency in reported kinetic data. For this reason, we developed a novel label-free assay based on high-throughput (>1 Hz) desorption electrospray ionization mass spectrometry (DESI-MS) for the direct quantitation of the sulfoconjugated product (CV<10 %; <1 ng analyte). The performance of this DESI-based assay was compared against a new fluorometric coupled-enzyme method that we also developed. Both methodologies provided consistent kinetic data for the reaction of SULT2B1b with its major substrates, indicating the affinity trend pregnenolone>DHEA>cholesterol, for both the phospho-mimetic and wild-type SULT2B1b forms. The novel DESI-MS assay developed here is likely generalizable to other drug discovery efforts and is particularly promising for identification of SULT2B1b inhibitors with potential as prostate cancer therapeutics.


Assuntos
Neoplasias da Próstata , Espectrometria de Massas por Ionização por Electrospray , Bioensaio , Humanos , Cinética , Masculino , Sulfotransferases/química , Sulfotransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA