Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Surv Ophthalmol ; 69(4): 585-605, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38432359

RESUMO

Laser photocoagulation (LPC) and/or intravitreal anti-vascular endothelial growth factor (anti-VEGF) injections constitute the current standard treatment for retinopathy of prematurity (ROP). This network meta-analysis focus on whether a ranking of interventions may be established for different dose levels of intravitreal injection of anti-VEGF agents (aflibercept, bevacizumab, conbercept, ranibizumab) as primary treatments for ROP versus laser in terms of retreatment rate as primary outcome, and time to retreatment and refractive error as secondary endpoints, since best anti-VEGF dosage remains under debate. Sixty-eight studies (15 randomized control trials and 53 nonrandomized studies) of 12,356 eyes of 6445 infants were retrieved from databases (2005 Jan. - 2023 June). Studies were evaluated for model fit, risk of bias and confidence of evidence in Network Meta-Analysis (CINeMA). Bayesian NMA showed that anti-VEGF drugs were not inferior to laser in terms of retreatment rate. For intravitreal bevacizumab (IVB), doses half of the conventional infant dose showed a low risk of retreatment rate (risk ratio (RR) of 1.43; 95% credible interval (CrI): 0.508, 4.03). On probability ranking as surface under the cumulative ranking curve (SUCRA) plot, half dose of bevacizumab had a better position than conventional and augmented (1.2-2 times the regular dose) doses. A similar probability trend was observed for half vs. conventional doses of aflibercept and ranibizumab. Conventional infant dose of conbercept showed the lowest risk for retreatment (RR 0.846; 95% CrI: 0.245, 2.91). For secondary endpoints, lower doses of anti-VEGF agents were associated with shorter times to retreatment. The largest changes were noted for the augmented doses of bevacizumab and ranibizumab (0.3 mg) with means of 14.1 weeks (95% CrI: 6.65, 21.6) and 12.8 weeks (95% CrI: 3.19, 20.9), respectively. Finally, NMA demonstrated better refractive profile for anti-VEGF than laser therapy, especially for the conventional infant doses of bevacizumab and ranibizumab which exhibited a significantly better refractive profile than LPC, with mean differences of 1.67 (spherical equivalent - diopters) (95% CrI: 0.705, 2.67) and 2.19 (95% CrI: 0.782, 3.59), respectively. In the SUCRA plots, LPC had a markedly different position with a higher probability for myopia. Further clinical trials comparing different intravitreal doses of anti-VEGF agents are needed, but our findings suggest that low doses of these drugs retain efficacy and may reduce ocular and systemic undesired events.


Assuntos
Inibidores da Angiogênese , Bevacizumab , Injeções Intravítreas , Fotocoagulação a Laser , Metanálise em Rede , Ranibizumab , Receptores de Fatores de Crescimento do Endotélio Vascular , Proteínas Recombinantes de Fusão , Retinopatia da Prematuridade , Fator A de Crescimento do Endotélio Vascular , Humanos , Retinopatia da Prematuridade/tratamento farmacológico , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/uso terapêutico , Receptores de Fatores de Crescimento do Endotélio Vascular/administração & dosagem , Bevacizumab/administração & dosagem , Bevacizumab/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/uso terapêutico , Ranibizumab/administração & dosagem , Ranibizumab/uso terapêutico , Fotocoagulação a Laser/métodos , Recém-Nascido
2.
Mucosal Immunol ; 14(2): 377-388, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32887938

RESUMO

Several mucins are implicated in idiopathic pulmonary fibrosis (IPF); however, there is no evidence regarding the role of MUC4 in the development of IPF. Here we demonstrated that MUC4 was overexpressed in IPF patients (n = 22) compared with healthy subjects (n = 21) and located in pulmonary arteries, bronchial epithelial cells, fibroblasts, and hyperplastic alveolar type II cells. Decreased expression of MUC4 using siRNA-MUC4 inhibited the mesenchymal/myofibroblast transformations of alveolar type II A549 cells and lung fibroblasts, as well as cell senescence and fibroblast proliferation induced by TGF-ß1. The induction of the overexpression of MUC4 increased the effects of TGF-ß1 on mesenchymal/myofibroblast transformations and cell senescence. MUC4 overexpression and siRNA-MUC4 gene silencing increased or decreased, respectively, the phosphorylation of TGFßRI and SMAD3, contributing to smad-binding element activation. Immunoprecipitation analysis and confocal immunofluorescence showed the formation of a protein complex between MUC4ß/p-TGFßRI and p-SMAD3 in the cell membrane after TGF-ß1 stimulation and in lung tissue from IPF patients. Bleomycin-induced lung fibrosis was reduced in mice transiently transfected with siRNA-MUC4. This study shows that MUC4 expression is enhanced in IPF and promotes fibrotic processes in collaboration with TGF-ß1 canonical pathway that could be an attractive druggable target for human IPF.


Assuntos
Fibroblastos/patologia , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/patologia , Mucina-4/metabolismo , Mucosa Respiratória/metabolismo , Células A549 , Senescência Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Fibrose Pulmonar Idiopática/imunologia , Terapia de Alvo Molecular , Mucina-4/genética , RNA Interferente Pequeno/genética , Mucosa Respiratória/patologia , Transdução de Sinais , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima
3.
Thorax ; 75(2): 132-142, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31801904

RESUMO

BACKGROUND: Serum KL6/mucin 1 (MUC1) has been identified as a potential biomarker in idiopathic pulmonary fibrosis (IPF), but the role of MUC1 intracellular bioactivation in IPF is unknown. OBJECTIVE: To characterise MUC1 intracellular bioactivation in IPF. METHODS AND RESULTS: The expression and phosphorylation of Thr41 and Tyr46 on the intracellular MUC1-cytoplasmic tail (CT) was increased in patients with IPF (n=22) compared with healthy subjects (n=21) and localised to fibroblasts and hyperplastic alveolar type II cells. Transforming growth factor (TGF)-ß1 phosphorylated SMAD3 and thereby increased the phosphorylation of MUC1-CT Thr41 and Tyr46 in lung fibroblasts and alveolar type II cells, activating ß-catenin to form a phospho-Smad3/MUC1-CT and MUC1-CT/ß-catenin nuclear complex. This nuclear complex promoted alveolar epithelial type II and fibroblast to myofibroblast transitions, as well as cell senescence and fibroblast proliferation. The inhibition of MUC1-CT nuclear translocation using the inhibitor, GO-201 or silencing MUC1 by siRNA, reduced myofibroblast transition, senescence and proliferation in vitro. Bleomycin-induced lung fibrosis was reduced in mice treated with GO-201 and in MUC1-knockout mice. The profibrotic lectin, galectin-3, directly activated MUC1-CT and served as a bridge between the TGF-ß receptor and the MUC1-C domain, indicating TGF-ß1-dependent and TGF-ß1-independent intracellular bioactivation of MUC1. CONCLUSIONS: MUC1 intracellular bioactivation is enhanced in IPF and promotes fibrotic processes that could represent potential druggable targets for IPF.


Assuntos
Regulação da Expressão Gênica/genética , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/genética , Mucina-1/genética , Fator de Crescimento Transformador beta1/genética , Animais , Biópsia por Agulha , Bleomicina/farmacologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Fibroblastos/efeitos dos fármacos , Humanos , Fibrose Pulmonar Idiopática/patologia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Terapia de Alvo Molecular/métodos , RNA Mensageiro/genética , Medição de Risco , Transdução de Sinais/genética , Proteína Smad3/genética
4.
Allergy ; 74(1): 111-121, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29978485

RESUMO

BACKGROUND: The loss of corticosteroid efficacy is an important issue in severe asthma management and may lead to poor asthma control and deterioration of airflow. Recent data indicate that Mucin 1 (MUC1) membrane mucin can mediate corticosteroid efficacy in chronic rhinosinusitis, but the role of MUC1 in uncontrolled severe asthma is unknown. The objective was to analyze the previously unexplored role of MUC1 on corticosteroid efficacy in asthma. METHODS: Mucin 1 expression was evaluated by real-time PCR in human bronchial epithelial cells (HBEC) and blood neutrophils from uncontrolled severe asthma (n = 27), controlled mild asthma (n = 16), and healthy subjects (n = 13). IL-8, MMP9, and GM-CSF were measured by ELISA in HBEC and neutrophils. An asthma model of ovalbumin (OVA) was used in MUC1 KO and WT C57BL/6 mice according to ARRIVE guidelines. RESULTS: Mucin 1-CT expression was downregulated in bronchial epithelial cells and peripheral blood neutrophils from severe asthma patients compared with mild asthma and healthy subjects (P < 0.05). Daily dose of inhaled corticosteroids (ICS) inversely correlated with MUC1 expression in neutrophils from mild and severe asthma (ρ = -0.71; P < 0.0001). Dexamethasone showed lower anti-inflammatory effects in severe asthma peripheral blood neutrophils and HBECs stimulated with lipopolysaccharide (LPS) than in cells from mild asthma. Glucocorticoid receptor (GR)-α phosphorylated at serine 226 was increased in cells from severe asthma, and the MUC1-CT/GRα complex was downregulated in severe asthma cells. OVA asthma model in MUC1 KO mice was resistant to the anti-inflammatory effects of dexamethasone. CONCLUSION: Mucin 1-CT modulates corticosteroid efficacy in vitro and in vivo asthma models.


Assuntos
Corticosteroides/farmacologia , Asma/tratamento farmacológico , Resistência a Medicamentos , Mucina-1/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Asma/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Dexametasona/farmacologia , Células Epiteliais/metabolismo , Humanos , Camundongos , Neutrófilos/metabolismo , Receptores de Glucocorticoides/metabolismo
5.
Respir Res ; 19(1): 226, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30458870

RESUMO

BACKGROUND: Lung inflammation in COPD is poorly controlled by inhaled corticosteroids (ICS). Strategies to improve ICS efficacy or the search of biomarkers who may select those patients candidates to receive ICS in COPD are needed. Recent data indicate that MUC1 cytoplasmic tail (CT) membrane mucin can mediate corticosteroid efficacy in chronic rhinosinusitis. The objective of this work was to analyze the previously unexplored role of MUC1 on corticosteroid efficacy in COPD in vitro and in vivo models. METHODS: MUC1-CT expression was measured by real time PCR, western blot, immunohistochemistry and immunofluorescence. The inflammatory mediators IL-8, MMP9, GM-CSF and MIP3α were measured by ELISA. The effect of MUC1 on inflammation and corticosteroid anti-inflammatory effects was measured using cell siRNA in vitro and Muc1-KO in vivo animal models. RESULTS: MUC1-CT expression was downregulated in lung tissue, bronchial epithelial cells and lung neutrophils from smokers (n = 11) and COPD (n = 11) patients compared with healthy subjects (n = 10). MUC1 was correlated with FEV1% (ρ = 0.7479; p < 0.0001) in smokers and COPD patients. Cigarette smoke extract (CSE) decreased the expression of MUC1 and induced corticosteroid resistance in human primary bronchial epithelial cells and human neutrophils. MUC1 Gene silencing using siRNA-MUC1 impaired the anti-inflammatory effects of dexamethasone and reduced glucocorticoid response element activation. Dexamethasone promoted glucocorticoid receptor alpha (GRα) and MUC1-CT nuclear translocation and co-localization that was inhibited by CSE. Lung function decline and inflammation induced by lipopolysaccharide and cigarette smoke in Muc1 KO mice was resistant to dexamethasone. CONCLUSIONS: These results confirm a role for MUC1-CT mediating corticosteroid efficacy in COPD.


Assuntos
Corticosteroides/uso terapêutico , Resistência a Medicamentos/fisiologia , Mucina-1/metabolismo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Corticosteroides/farmacologia , Idoso , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Resistência a Medicamentos/efeitos dos fármacos , Feminino , Inativação Gênica/efeitos dos fármacos , Inativação Gênica/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Mucina-1/genética , Doença Pulmonar Obstrutiva Crônica/genética , Escarro/metabolismo
6.
Thorax ; 73(6): 519-529, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29440315

RESUMO

BACKGROUND: Pulmonary hypertension (PH) is a common disorder in patients with idiopathic pulmonary fibrosis (IPF) and portends a poor prognosis. Recent studies using vasodilators approved for PH have failed in improving IPF mainly due to ventilation (V)/perfusion (Q) mismatching and oxygen desaturation. Janus kinase type 2 (JAK2) is a non-receptor tyrosine kinase activated by a broad spectrum of profibrotic and vasoactive mediators, but its role in PH associated to PH is unknown. OBJECTIVE: The study of JAK2 as potential target to treat PH in IPF. METHODS AND RESULTS: JAK2 expression was increased in pulmonary arteries (PAs) from IPF (n=10; 1.93-fold; P=0.0011) and IPF+PH (n=9; 2.65-fold; P<0.0001) compared with PA from control subjects (n=10). PA remodelling was evaluated in human pulmonary artery endothelial cells (HPAECs) and human pulmonary artery smooth muscle cells (HPASMCs) from patients with IPF in vitro treated with the JAK2 inhibitor JSI-124 or siRNA-JAK2 and stimulated with transforming growth factor beta. Both JSI-124 and siRNA-JAK2 inhibited the HPAEC to mesenchymal transition and the HPASMCs to myofibroblast transition and proliferation. JAK2 inhibition induced small PA relaxation in precision-cut lung slice experiments. PA relaxation was dependent of the large conductance calcium-activated potassium channel (BKCa). JAK2 inhibition activated BKCa channels and reduced intracellular Ca2+. JSI-124 1 mg/kg/day, reduced bleomycin-induced lung fibrosis, PA remodelling, right ventricular hypertrophy, PA hypertension and V/Q mismatching in rats. The animal studies followed the ARRIVE guidelines. CONCLUSIONS: JAK2 participates in PA remodelling and tension and may be an attractive target to treat IPF associated to PH.


Assuntos
Hipertensão Pulmonar/tratamento farmacológico , Fibrose Pulmonar Idiopática/tratamento farmacológico , Janus Quinase 2/antagonistas & inibidores , Triterpenos/farmacologia , Remodelação Vascular/efeitos dos fármacos , Animais , Western Blotting , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Endoteliais , Imunofluorescência , Humanos , Imuno-Histoquímica , Janus Quinase 2/metabolismo , Miócitos de Músculo Liso , Fenótipo , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Fator de Crescimento Transformador beta/farmacologia
7.
Respir Res ; 19(1): 24, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29409529

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is the most rapidly progressive and fatal fibrotic disorder, with no curative therapies. The signal transducer and activator of transcription 3 (STAT3) protein is activated in lung fibroblasts and alveolar type II cells (ATII), thereby contributing to lung fibrosis in IPF. Although activation of Janus kinase 2 (JAK2) has been implicated in proliferative disorders, its role in IPF is unknown. The aim of this study was to analyze JAK2 activation in IPF, and to determine whether JAK2/STAT3 inhibition is a potential therapeutic strategy for this disease. METHODS AND RESULTS: JAK2/p-JAK2 and STAT3/pSTAT3 expression was evaluated using quantitative real time-PCR, western blotting, and immunohistochemistry. Compared to human healthy lung tissue (n = 10) both proteins were upregulated in the lung tissue of IPF patients (n = 12). Stimulating primary ATII and lung fibroblasts with transforming growth factor beta 1 or interleukin (IL)-6/IL-13 activated JAK2 and STAT3, inducing epithelial to mesenchymal and fibroblast to myofibroblast transitions. Dual p-JAK2/p-STAT3 inhibition with JSI-124 or silencing of JAK2 and STAT3 genes suppressed ATII and the fibroblast to myofibroblast transition, with greater effects than the sum of those obtained using JAK2 or STAT3 inhibitors individually. Dual rather than single inhibition was also more effective for inhibiting fibroblast migration, preventing increases in fibroblast senescence and Bcl-2 expression, and ameliorating impaired autophagy. In rats administered JSI-124, a dual inhibitor of p-JAK2/p-STAT3, at a dose of 1 mg/kg/day, bleomycin-induced lung fibrosis was reduced and collagen deposition in the lung was inhibited, as were JAK2 and STAT3 activation and several markers of fibrosis, autophagy, senescence, and anti-apoptosis. CONCLUSIONS: JAK2 and STAT3 are activated in IPF, and their dual inhibition may be an attractive strategy for treating this disease.


Assuntos
Fibrose Pulmonar Idiopática/enzimologia , Fibrose Pulmonar Idiopática/patologia , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia , Células A549 , Adulto , Idoso , Animais , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Fibroblastos/patologia , Humanos , Janus Quinase 2/antagonistas & inibidores , Masculino , Pessoa de Meia-Idade , Ratos , Fator de Transcrição STAT3/antagonistas & inibidores , Triterpenos/farmacologia
8.
J Allergy Clin Immunol ; 139(3): 855-862.e13, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27639937

RESUMO

BACKGROUND: Current evidence suggests that membrane-tethered mucins could mediate corticosteroid efficacy, interacting with glucocorticoid receptor (GR) in patients with chronic rhinosinusitis with nasal polyps (CRSwNP). Mucin 4 (MUC4)-tethered mucin is expressed in nasal polyp (NP) epithelial cells and upregulated under inflammatory conditions. Moreover, MUC4ß has the capacity to interact with other intracellular proteins. We hypothesized that MUC4 modulates corticosteroid efficacy of patients with CRSwNP. OBJECTIVE: We sought to analyze the role of MUC4 in corticosteroid effectiveness in different cohorts of patients with CRSwNP and elucidate the possible mechanisms involved. METHODS: Eighty-one patients with CRSwNP took oral corticosteroids for 15 days. Corticosteroid resistance was evaluated by using nasal endoscopy. Expression of MUC4 and MUC4ß was evaluated by means of real-time PCR, Western blotting, and immunohistochemistry. BEAS-2B knockdown with RNA interference for MUC4 (small interfering RNA [siRNA]-MUC4) was used to analyze the role of MUC4 in the anti-inflammatory effects of dexamethasone. RESULTS: Twenty-two patients had NPs resistant to oral corticosteroids. MUC4 expression was upregulated in these patients. In siRNA-MUC4 BEAS-2B airway epithelial cells dexamethasone produced higher anti-inflammatory effects, increased inhibition of phospho-extracellular signal-regulated kinase 1/2, increased mitogen-activated protein kinase phosphatase 1 expression, and increased glucocorticoid response element activation. Immunoprecipitation and immunofluorescence experiments revealed that MUC4ß forms a complex with GRα in the nuclei of NP epithelial cells from corticosteroid-resistant patients. CONCLUSION: MUC4ß participates in the corticosteroid resistance process, inhibiting normal GRα nuclear function. The high expression of MUC4 in patients with CRSwNP might participate in corticosteroid resistance.


Assuntos
Anti-Inflamatórios/uso terapêutico , Resistência a Medicamentos , Mucina-4/imunologia , Pólipos Nasais/tratamento farmacológico , Pregnenodionas/uso terapêutico , Rinite/tratamento farmacológico , Sinusite/tratamento farmacológico , Adulto , Idoso , Anti-Inflamatórios/farmacologia , Linhagem Celular , Células Cultivadas , Doença Crônica , Dexametasona/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Mucina-4/genética , Adulto Jovem
9.
Respir Res ; 17(1): 145, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27825347

RESUMO

BACKGROUND: Inhaled corticosteroid (ICS) with long-acting beta-2 agonists is a well-documented combination therapy for chronic obstructive pulmonary disease (COPD) based on its additive anti-inflammatory properties. By contrast, the recommendation of ICS in combination with long-acting muscarinic antagonist (LAMA) is not evidence-based. In this study, neutrophils obtained from COPD patients were used to compare the anti-inflammatory effects of aclidinium bromide (a long-acting muscarinic antagonist) with corticosteroids and their potential additive effect. METHODS: Human sputum and blood neutrophils were isolated from healthy individuals (n = 37), patients with stable COPD (n = 52) and those with exacerbated COPD (n = 16). The cells were incubated with corticosteroid fluticasone propionate (0.1 nM-1 µM), aclidinium bromide (0.1 nM-1 µM) or a combination thereof and stimulated with 1 µg of lipopolysaccharide/ml or 5 % cigarette smoke extract. Levels of the pro-inflammatory mediators interleukin-8, matrix metalloproteinase-9, CCL-5, granulocyte-macrophage colony-stimulating factor and interleukin-1ß were measured and the mechanisms of corticosteroid resistance evaluated at the end of the incubation. RESULTS: The non-neuronal cholinergic system was over-expressed in neutrophils from COPD patients, as evidenced by increases in the expression of muscarinic receptors (M2, M4 and M5), choline acetyltransferase and vesicular acetylcholine transporter. Aclidinium bromide demonstrated anti-inflammatory effects on neutrophils from COPD patients, reversing their resistance to corticosteroids. Additive effects of combined aclidinium bromide and fluticasone propionate in blocking M2 receptor levels, inhibiting phosphoinositide 3-kinase-δ and enhancing the glucocorticoid response element transcription factor were demonstrated and were accompanied by an increase in the corticosteroid-induced expression of anti-inflammatory-related genes. CONCLUSIONS: LAMAs potentiate the anti-inflammatory effects of corticosteroids in neutrophils from COPD patients in vitro, thus providing a scientific rationale for their use in combination with corticosteroids in the treatment of COPD.


Assuntos
Anti-Inflamatórios/farmacologia , Broncodilatadores/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Fluticasona/farmacologia , Antagonistas Muscarínicos/farmacologia , Neutrófilos/efeitos dos fármacos , Sistema Colinérgico não Neuronal/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Tropanos/farmacologia , Idoso , Estudos de Casos e Controles , Colina O-Acetiltransferase/metabolismo , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Doença Pulmonar Obstrutiva Crônica/sangue , Receptores Muscarínicos/efeitos dos fármacos , Receptores Muscarínicos/metabolismo , Escarro/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
10.
Respir Res ; 16: 12, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25652132

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is characterised by chronic pulmonary inflammation punctuated by periods of viral exacerbations. Recent evidence suggests that the combination of roflumilast with corticosteroids may improve the compromised anti-inflammatory properties of corticosteroids in COPD. We analyzed differential and combination anti-inflammatory effects of dexamethasone and roflumilast N-oxide in human bronchial epithelial cells (HBECs) stimulated with viral toll like receptor (TLR) agonists. METHODS: Lung tissue and HBECs were isolated from healthy (n = 15), smokers (n = 12) and smokers with COPD (15). TLR3 expression was measured in lung tissue and in HBECs. IL-8 secretion was measured in cell cultures after TLR3 stimulation with poly I:C 10 µg/mL. RESULTS: We found that TLR3 expression was increased by 1.95 fold (protein) and 2.5 fold (mRNA) in lung tissues from smokers with COPD and inversely correlated with lung function. The TLR3 agonist poly I:C 10 µg/mL increased the IL-8 release in HBECs that was poorly inhibited by dexamethasone in smokers (24.5%) and smokers with COPD (21.6%). In contrast, roflumilast showed similar inhibitory effects on IL-8 release in healthy (58.8%), smokers (56.6%) and smokers with COPD (50.5%). The combination of roflumilast N-oxide and dexamethasone showed additive inhibitory effects. Mechanistically, roflumilast N-oxide when combined with dexamethasone increased the expression of MKP1, and enhanced the inhibitory effects on phospho-p38, AP1 and NFκB activities which may explain the additive anti-inflammatory effects. CONCLUSIONS: Altogether, our data provide in vitro evidence for a possible clinical utility to add roflumilast on top of inhaled corticosteroid in COPD.


Assuntos
Corticosteroides/farmacologia , Aminopiridinas/farmacologia , Anti-Inflamatórios/farmacologia , Benzamidas/farmacologia , Brônquios/efeitos dos fármacos , Dexametasona/farmacologia , Resistência a Medicamentos , Células Epiteliais/efeitos dos fármacos , Poli I-C/farmacologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Receptor 3 Toll-Like/agonistas , Idoso , Brônquios/imunologia , Brônquios/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Ciclopropanos/farmacologia , Quimioterapia Combinada , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Feminino , Humanos , Interleucina-8/imunologia , Interleucina-8/metabolismo , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fumar/efeitos adversos , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/imunologia , Receptor 3 Toll-Like/metabolismo
11.
Eur J Pharmacol ; 715(1-3): 172-80, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23747655

RESUMO

Eosinophils play a prominent role in the process of allergic inflammation. Non-receptor associated Lyn tyrosine kinases generate key initial signals in eosinophils. Bafetinib, a specific Abl/Lyn tyrosine kinase inhibitor has shown a potent antiproliferative activity in leukemic cells, but its effects on eosinophils have not been reported. Therefore, we studied the effects of bafetinib on functional and mechanistic responses of isolated human eosinophils. Bafetinib was more potent than non-specific tyrosin kinase comparators genistein and tyrphostin inhibiting superoxide anion triggered by N-formyl-Met-Leu-Phe (fMLF; 100 nM) (-log IC50=7.25 ± 0.04 M; 6.1 ± 0.04 M; and 6.55 ± 0.03 M, respectively). Bafetinib, genistein and tyrphostin did not modify the [Ca(2+)]i responses to fMLF. Bafetinib inhibited the release of EPO induced by fMLF with higher potency than genistein and tyrphostin (-log IC50=7.24 ± 0.09 M; 5.36 ± 0.28 M; and 5.37 ± 0.19 M, respectively), and nearly suppressed LTC4, ECP and chemotaxis. Bafetinib, genistein and tyrphostin did not change constitutive apoptosis. However bafetinib inhibited the ability of granulocyte-monocyte colony-stimulating factor to prevent apoptosis. The activation of Lyn tyrosine kinase, p-ERK1/2 and p-38 induced by fMLF was suppressed by bafetinib and attenuated by genistein and tyrphostin. In conclusion, bafetinib inhibits oxidative burst and generation of inflammatory mediators, and reverses the eosinophil survival. Therefore, future anti-allergic therapies based on bafetinib, could help to suppress excessive inflammatory response of eosinophils at inflammatory sites.


Assuntos
Eosinófilos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Movimento Celular/efeitos dos fármacos , Proteína Catiônica de Eosinófilo/biossíntese , Eosinófilos/citologia , Eosinófilos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Interleucina-5/farmacologia , Leucotrieno C4/biossíntese , N-Formilmetionina Leucil-Fenilalanina/farmacologia , Peroxidase/metabolismo , Superóxidos/metabolismo
12.
Arterioscler Thromb Vasc Biol ; 33(1): 96-104, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23117657

RESUMO

OBJECTIVE: Angiotensin-II (Ang-II) promotes the interaction of mononuclear cells with arterioles and neutrophils with postcapillary venules. To investigate the mechanisms underlying this dissimilar response, the involvement of fractalkine (CX(3)CL1) was explored. METHODS AND RESULTS: Enhanced CX(3)CL1 expression was detected in both cremasteric arterioles and postcapillary venules 24 hours after Ang-II intrascrotal injection. Arteriolar leukocyte adhesion was the unique parameter significantly reduced (83%) in animals lacking CX(3)CL1 receptor (CX(3)CR1). Human umbilical arterial and venous endothelial cell stimulation with 1 µmol/L Ang-II increased CX(3)CL1 expression, yet neutralization of CX(3)CL1 activity only significantly inhibited Ang-II-induced mononuclear cell-human umbilical arterial endothelial cell interactions (73%) but not with human umbilical venous endothelial cells. The use of small interfering RNA revealed the involvement of tumor necrosis factor-α in Ang-II-induced CX(3)CL1 upregulation and mononuclear cell arrest. Nox5 knockdown with small interfering RNA or pharmacological inhibition of extracellular signal-regulated kinases1/2, p38 mitogen-activated protein kinase, and nuclear factor-κB also abolished these responses. Finally, when human umbilical arterial endothelial cells were costimulated with Ang-II, tumor necrosis factor-α, and interferon-γ, CX(3)CL1 expression and mononuclear cell adhesiveness were more pronounced than when each stimulus was provided alone. CONCLUSIONS: These results suggest that Ang-II induces functional CX(3)CL1 expression in arterial but not in venous endothelia. Thus, targeting endothelial CX(3)CL1-mononuclear leukocyte CX(3)CR1 interactions may constitute a new therapeutic strategy in the treatment of Ang-II-associated cardiovascular diseases.


Assuntos
Angiotensina II/metabolismo , Artérias/metabolismo , Quimiocina CX3CL1/metabolismo , Células Endoteliais/metabolismo , Veias/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Artérias/efeitos dos fármacos , Arteríolas/efeitos dos fármacos , Arteríolas/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Receptor 1 de Quimiocina CX3C , Adesão Celular , Células Cultivadas , Quimiocina CX3CL1/genética , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Interferon gama/metabolismo , Migração e Rolagem de Leucócitos , Leucócitos/metabolismo , Losartan/farmacologia , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 2 , NADPH Oxidase 4 , NADPH Oxidase 5 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , NF-kappa B/metabolismo , Interferência de RNA , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Transdução de Sinais , Fatores de Tempo , Transfecção , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Veias/efeitos dos fármacos , Vênulas/efeitos dos fármacos , Vênulas/metabolismo
13.
Thorax ; 68(2): 177-86, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23143793

RESUMO

BACKGROUND: Cigarette smoking is an important risk factor for the development of cardiovascular disease, yet the pathways through which this may operate are poorly understood. Therefore, the mechanism underlying cigarette smoke (CS)-induced arterial endothelial dysfunction and the potential link with fractalkine/CX(3)CL1 upregulation were investigated. METHODS AND RESULTS: Stimulation of human arterial umbilical endothelial cells (HUAECs) with pathophysiological concentrations of CS extract (1% CSE) increased CX(3)CL1 expression. Neutralisation of CX(3)CL1 activity under dynamic flow conditions significantly inhibited CSE-induced mononuclear cell adhesion to HUAECs (67%). The use of small interfering RNA (siRNA) revealed that nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 5 (Nox5) but not Nox2 or Nox4 is the main NADPH isoform involved in CSE-induced CX(3)CL1 upregulation and mononuclear cell arrest. Knock down of HUAEC tumour necrosis factor α expression with siRNA or pharmacological inhibition of p38 mitogen-activated protein kinase and nuclear factor κB also abolished these responses. Interestingly, circulating monocytes and lymphocytes from patients with chronic obstructive pulmonary disease (COPD) (n=29) versus age-matched controls (n=23) showed CX(3)CR1overexpression. Furthermore, CX(3)CL1 neutralisation dramatically diminished their enhanced adhesiveness to CSE-stimulated HUAECs. Finally, when animals were exposed for 3 days to CS, a mild inflammatory response in the lung was observed which was accompanied by enhanced CX(3)CL1 expression in the cremasteric arterioles, an organ distant from the lung. CS exposure resulted in increased leukocyte-arteriolar endothelial cell adhesion which was significantly reduced (51%) in animals lacking CX(3)CL1 receptor (CX(3)CR1). CONCLUSIONS: These results suggest that CS induces functional CX(3)CL1 expression in arterial endothelium and leukocytes from patients with COPD show increased CX(3)CL1-dependent adhesiveness. Therefore, targeting the CX(3)CL1/CX(3)CR1 axis might prevent COPD-associated cardiovascular disorders.


Assuntos
Quimiocina CX3CL1/fisiologia , Endotélio Vascular/citologia , Fumar/fisiopatologia , Animais , Adesão Celular , Endotélio Vascular/fisiologia , Humanos , Proteínas de Membrana/fisiologia , Camundongos , Microcirculação/fisiologia , NADPH Oxidase 5 , NADPH Oxidases/fisiologia , RNA Interferente Pequeno/fisiologia , Regulação para Cima/fisiologia
14.
Eur Respir J ; 41(6): 1264-74, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23018909

RESUMO

Cigarette smoking contributes to lung remodelling in chronic obstructive pulmonary disease (COPD). As part of this remodelling, peribronchiolar fibrosis is observed in the small airways of COPD patients and contributes to airway obstruction. Fibroblast-to-myofibroblast transition is a key step in peribronchiolar fibrosis formation. This in vitro study examined the effect of cigarette smoke on bronchial fibroblast-to-myofibroblast transition, and whether aclidinium bromide inhibits this process. Human bronchial fibroblasts were incubated with aclidinium bromide (10(-9)-10(-7) M) and exposed to cigarette smoke extract. Collagen type I and α-smooth muscle actin (α-SMA) expression were measured by real-time PCR and Western blotting, as myofibroblast markers. Intracellular reactive oxygen species, cyclic AMP (cAMP), extracellular signal-regulated kinase (ERK)1/2 and choline acetyltransferase were measured as intracellular signalling mediators. Cigarette smoke-induced collagen type I and α-SMA was mediated by the production of reactive oxygen species, the depletion of intracellular cAMP and the increase of ERK1/2 phosphorylation and choline acetyltransferase. These effects could be reversed by treatment with the anticholinergic aclidinium bromide, by silencing the mRNA of muscarinic receptors M1, M2 or M3, or by the depletion of extracellular acetylcholine by treatment with acetylcholinesterase. A non-neuronal cholinergic system is implicated in cigarette smoke-induced bronchial fibroblast-to-myofibroblast transition, which is inhibited by aclidinium bromide.


Assuntos
Fibroblastos/citologia , Regulação da Expressão Gênica , Miofibroblastos/citologia , Fumar/efeitos adversos , Tropanos/farmacologia , Actinas/metabolismo , Brônquios/efeitos dos fármacos , Células Cultivadas , Antagonistas Colinérgicos/farmacologia , Colágeno Tipo I/metabolismo , AMP Cíclico/metabolismo , Fibroblastos/efeitos dos fármacos , Fibrose , Fluoresceínas/farmacologia , Humanos , Inflamação , Pulmão/citologia , Pulmão/efeitos dos fármacos , Microscopia de Fluorescência , Miofibroblastos/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fumaça , Fatores de Tempo
15.
J Immunol ; 189(1): 411-24, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22661092

RESUMO

Mononuclear cell migration into the vascular subendothelium constitutes an early event of the atherogenic process. Because the effect of retinoid X receptor (RXR)α on arterial mononuclear leukocyte recruitment is poorly understood, this study investigated whether RXR agonists can affect this response and the underlying mechanisms involved. Decreased RXRα expression was detected after 4 h stimulation of human umbilical arterial endothelial cells with TNF-α. Interestingly, under physiological flow conditions, TNF-α-induced endothelial adhesion of human mononuclear cells was concentration-dependently inhibited by preincubation of the human umbilical arterial endothelial cells with RXR agonists such as bexarotene or 9-cis-retinoid acid. RXR agonists also prevented TNF-α-induced VCAM-1 and ICAM-1 expression, as well as endothelial growth-related oncogene-α and MCP-1 release. Suppression of RXRα expression with a small interfering RNA abrogated these responses. Furthermore, inhibition of MAPKs and NF-κB pathways were involved in these events. RXR agonist-induced antileukocyte adhesive effects seemed to be mediated via RXRα/peroxisome proliferator-activated receptor (PPAR)γ interaction, since endothelial PPARγ silencing abolished their inhibitory responses. Furthermore, RXR agonists increased RXR/PPARγ interaction, and combinations of suboptimal concentrations of both nuclear receptor ligands inhibited TNF-α-induced mononuclear leukocyte arrest by 60-65%. In vivo, bexarotene dose-dependently inhibited TNF-α-induced leukocyte adhesion to the murine cremasteric arterioles and decreased VCAM-1 and ICAM-1 expression. Therefore, these results reveal that RXR agonists can inhibit the initial inflammatory response that precedes the atherogenic process by targeting different steps of the mononuclear recruitment cascade. Thus, RXR agonists may constitute a new therapeutic tool in the control of the inflammatory process associated with cardiovascular disease.


Assuntos
Inibição de Migração Celular/imunologia , Endotélio Vascular/imunologia , Endotélio Vascular/patologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/patologia , PPAR gama/metabolismo , Receptor X Retinoide alfa/agonistas , Bexaroteno , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/imunologia , Linhagem Celular , Inibição de Migração Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/imunologia , Endotélio Vascular/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/sangue , Leucócitos Mononucleares/efeitos dos fármacos , Microcirculação/efeitos dos fármacos , Microcirculação/imunologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/imunologia , PPAR gama/fisiologia , Receptor X Retinoide alfa/biossíntese , Receptor X Retinoide alfa/fisiologia , Tetra-Hidronaftalenos/farmacologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/fisiologia , Artérias Umbilicais/efeitos dos fármacos , Artérias Umbilicais/imunologia , Artérias Umbilicais/patologia , Molécula 1 de Adesão de Célula Vascular/sangue
16.
Free Radic Res ; 46(5): 690-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22360706

RESUMO

AIMS: Reactive oxygen species (ROS) are involved in the pathogenesis of many inflammatory diseases such as chronic obstructive pulmonary disease (COPD). They can alter the expression of genes involved in cellular damage by activating transcription factors, including the NF-κB and the activator protein 1 (AP-1). Phosphodiesterase type 4 (PDE4) inhibitors have anti-inflammatory and antioxidant effects, as described in in vivo and in vitro COPD models. This study analysed the effects of piclamilast, a selective PDE4 inhibitor, on modulating the global gene expression profile in A549 cells exposed to H(2)O(2). MAIN METHODS: Changes in gene expression were analysed using high-density Affymetrix microarrays and validated by RT-PCR. Cell proliferation was studied using BrdU incorporation. Apoptosis was assessed by flow cytometry using annexin V-fluorescein isothiocyanate. C-Jun phosphorylation and AP-1 activation were determined by ELISA and luciferase assay, respectively. KEY FINDINGS: Our results indicate that H(2)O(2) modified the expression of several genes related to apoptosis, cell cycle control and cell signalling, including IL8, FAS, HIG2, CXCL2, CDKN25 and JUNB. Piclamilast pre-treatment significantly inhibited the changes in 23 genes via mechanisms involving AP-1 activation and c-Jun phosphorylation at Ser63. Functional experiments confirmed our results, suggesting new targets related to the antioxidant properties of PDE4 inhibitors. SIGNIFICANCE: This is the first study to demonstrate antioxidant effects of a selective PDE4 inhibitor at the global gene expression level, and the results support the importance of AP-1 as a key regulator of the expression of genes involved in the inflammatory response of epithelial cells to oxidative damage.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Antioxidantes/farmacologia , Benzamidas/farmacologia , Peróxido de Hidrogênio/farmacologia , Inibidores da Fosfodiesterase 4/farmacologia , Piridinas/farmacologia , Fator de Transcrição AP-1/metabolismo , Células Epiteliais Alveolares/citologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , NF-kappa B/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Proteínas Proto-Oncogênicas c-jun/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
17.
Thorax ; 67(3): 229-37, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21957094

RESUMO

BACKGROUND: Fibroblast to myofibroblast transition is believed to contribute to airway remodelling in lung diseases such as asthma and chronic obstructive pulmonary disease. This study examines the role of aclidinium, a new long-acting muscarinic antagonist, on human fibroblast to myofibroblast transition. METHODS: Human bronchial fibroblasts were stimulated with carbachol (10(-8) to 10(-5) M) or transforming growth factor-ß1 (TGF-ß1; 2 ng/ml) in the presence or absence of aclidinium (10(-9) to 10(-7) M) or different drug modulators for 48 h. Characterisation of myofibroblasts was performed by analysis of collagen type I and α-smooth muscle actin (α-SMA) mRNA and protein expression as well as α-SMA microfilament immunofluorescence. ERK1/2 phosphorylation, RhoA-GTP and muscarinic receptors (M) 1, 2 and 3 protein expression were determined by western blot analysis and adenosine 3'-5' cyclic monophosphate levels were determined by ELISA. Proliferation and migration of fibroblasts were also assessed. RESULTS: Collagen type I and α-SMA mRNA and protein expression, as well as percentage α-SMA microfilament-positive cells, were upregulated in a similar way by carbachol and TGF-ß1, and aclidinium reversed these effects. Carbachol-induced myofibroblast transition was mediated by an increase in ERK1/2 phosphorylation, RhoA-GTP activation and cyclic monophosphate downregulation as well as by the autocrine TGF-ß1 release, which were effectively reduced by aclidinium. TGF-ß1 activated the non-neuronal cholinergic system. Suppression of M1, M2 or M3 partially prevented carbachol- and TGF-ß1-induced myofibroblast transition. Aclidinium dose-dependently reduced fibroblast proliferation and migration. CONCLUSION: Aclidinium inhibits human lung fibroblast to myofibrobast transition.


Assuntos
Brônquios/citologia , Fibroblastos/efeitos dos fármacos , Antagonistas Muscarínicos/farmacologia , Miofibroblastos/efeitos dos fármacos , Tropanos/farmacologia , Actinas/biossíntese , Actinas/genética , Carbacol/antagonistas & inibidores , Carbacol/farmacologia , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Agonistas Colinérgicos/farmacologia , Colágeno Tipo I/biossíntese , Colágeno Tipo I/genética , Relação Dose-Resposta a Droga , Fibroblastos/metabolismo , Humanos , RNA Mensageiro/genética , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Fator de Crescimento Transformador beta1/farmacologia , Regulação para Cima/efeitos dos fármacos
18.
Thorax ; 67(2): 147-56, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22106015

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is characterised by the aberrant epithelial to mesenchymal transition (EMT) and myofibroblast accumulation. Sphingosine-1-phosphate (S1P) and sphingosine kinase 1 (SPHK1) have been implicated in lung myofibroblast transition, but their role in EMT and their expression in patients with IPF is unknown. METHODS AND RESULTS: S1P levels were measured in serum (n=27) and bronchoalveolar lavage (BAL; n=15) from patients with IPF and controls (n=30 for serum and n=15 for BAL studies). SPHK1 expression was measured in lung tissue from patients with IPF (n=12) and controls (n=15). Alveolar type II transformation into mesenchymal cells was studied in response to S1P (10(-9)-10(-5) M). The median (IQR) of S1P serum levels was increased in patients with IPF (1.4 (0.4) µM) versus controls (1 (0.26) µM; p<0.0001). BAL S1P levels were increased in patients with IPF (1.12 (0.53) µM) versus controls (0.2 (0.5); p<0.0001) and correlated with diffusion capacity of the lung for carbon monoxide, forced expiratory volume in 1 s and forced vital capacity (Spearman's r=-0.87, -0.72 and -0.68, respectively) in patients with IPF. SPHK1 was upregulated in lung tissue from patients with IPF and correlated with α-smooth muscle actin, vimentin and collagen type I (Spearman's r=0.82, 0.85 and 0.72, respectively). S1P induced EMT in alveolar type II cells by interacting with S1P(2) and S1P(3), as well as by the activation of p-Smad3, RhoA-GTP, oxidative stress and transforming growth factor-ß1 (TGF-ß1) release. Furthermore, TGF-ß1-induced EMT was partially conducted by the S1P/SPHK1 activation, suggesting crosstalk between TGF-ß1 and the S1P/SPHK1 axis. CONCLUSIONS: S1P is elevated in patients with IPF, correlates with the lung function and mediates EMT.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Fibrose Pulmonar Idiopática/patologia , Lisofosfolipídeos/fisiologia , Esfingosina/análogos & derivados , Adulto , Idoso , Idoso de 80 Anos ou mais , Líquido da Lavagem Broncoalveolar/citologia , Estudos de Casos e Controles , Células Cultivadas , Relação Dose-Resposta a Droga , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Lisofosfolipídeos/metabolismo , Masculino , Pessoa de Meia-Idade , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo , Proteína Smad3/fisiologia , Esfingosina/metabolismo , Esfingosina/fisiologia , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/fisiologia , Proteína rhoA de Ligação ao GTP/fisiologia
19.
Biochem Pharmacol ; 82(5): 548-55, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21635874

RESUMO

64% of chronic obstructive pulmonary disease (COPD) exacerbations are caused by respiratory infections including influenza (strains A and B) and respiratory syncytial virus (RSV). They affect the airway epithelium increasing inflammatory and apoptosis events through mechanisms involving ROS generation, and induce the release of mucins from epithelial cells that are involved in the deterioration of the patient's health during the course of the disease. The antioxidant NAC has proved useful in the management of COPD reducing symptoms, exacerbations and accelerated lung function decline. It has been shown to inhibit influenza virus replication and to diminish the release of inflammatory and apoptotic mediators during virus infection. The main objective of this study is to analyze the effects of NAC in modulating MUC5AC over-expression and release in an in vitro infection model of alveolar type II A549 cells infected with influenza (strains A and B) and RSV. We have also analyzed virus replication and different pro-inflammatory responses. Our results indicate a significant induction of MUC5AC, IL8, IL6 and TNF-alpha that is strongly inhibited by NAC at the expression and at the release level. It also decreased the intracellular H(2)O(2) concentration and restored the intracellular total thiol contents. Mechanisms of NAC included inhibition of NF-κB translocation to the cellular nucleus and phosphorylation of MAPK p38. NAC also inhibited replication of the three viruses under study. This work supports the use of antioxidants in order to ameliorate the inflammatory effects of different viral infections during COPD exacerbations.


Assuntos
Acetilcisteína/farmacologia , Mediadores da Inflamação/metabolismo , Mucina-5AC/antagonistas & inibidores , Alvéolos Pulmonares/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Acetilcisteína/uso terapêutico , Linhagem Celular , Humanos , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/fisiologia , Vírus da Influenza B/efeitos dos fármacos , Vírus da Influenza B/fisiologia , Mucina-5AC/biossíntese , NF-kappa B/metabolismo , Fosforilação , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/virologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Vírus Sinciciais Respiratórios/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
J Immunol ; 185(6): 3718-27, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20709957

RESUMO

Angiotensin II (Ang-II) displays inflammatory activity and is implicated in several cardiovascular disorders. This study evaluates the effect of cis- and trans (t)-resveratrol (RESV) in two in vivo models of vascular inflammation and identifies the cardioprotective mechanisms that underlie them. In vivo, Ang-II-induced arteriolar leukocyte adhesion was inhibited by 71% by t-RESV (2.1 mg/kg, i.v.), but was not affected by cis-RESV. Because estrogens influence the rennin-angiotensin system, chronic treatment with t-RESV (15 mg/kg/day, orally) inhibited ovariectomy-induced arteriolar leukocyte adhesion by 81%, partly through a reduction of cell adhesion molecule (CAM) expression and circulating levels of cytokine-induced neutrophil chemoattractant, MCP-1, and MIP-1alpha. In an in vitro flow chamber system, t-RESV (1-10 microM) undermined the adhesion of human leukocytes under physiological flow to Ang-II-activated human endothelial cells. These effects were accompanied by reductions in monocyte and endothelial CAM expression, chemokine release, phosphorylation of p38 MAPK, and phosphorylation of the p65 subunit of NF-kappaB. Interestingly, t-RESV increased the expression of peroxisome proliferator-activated receptor-gamma in human endothelial and mononuclear cells. These results demonstrate for the first time that the in vivo anti-inflammatory activity of RESV is produced by its t-RESV, which possibly interferes with signaling pathways that cause the upregulation of CAMs and chemokine release. Upregulation of proliferator-activated receptor-gamma also appears to be involved in the cardioprotective effects of t-RESV. In this way, chronic administration of t-RESV may reduce the systemic inflammatory response associated with the activation of the rennin-angiotensin system, thereby decreasing the risk of further cardiovascular disease.


Assuntos
Angiotensina II/antagonistas & inibidores , Endotélio Vascular/patologia , Mediadores da Inflamação/farmacologia , NF-kappa B/antagonistas & inibidores , PPAR gama/biossíntese , Estilbenos/farmacologia , Regulação para Cima/imunologia , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Angiotensina II/fisiologia , Animais , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/imunologia , Células Cultivadas , Modelos Animais de Doenças , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/imunologia , Feminino , Humanos , Mediadores da Inflamação/administração & dosagem , Mediadores da Inflamação/química , Masculino , NF-kappa B/metabolismo , Ovariectomia , Ratos , Ratos Sprague-Dawley , Resveratrol , Estereoisomerismo , Estilbenos/administração & dosagem , Estilbenos/química , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA