Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1342977, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698847

RESUMO

Introduction: Aberrant reactive oxygen species (ROS) production is one of the hallmarks of cancer. During their growth and dissemination, cancer cells control redox signaling to support protumorigenic pathways. As a consequence, cancer cells become reliant on major antioxidant systems to maintain a balanced redox tone, while avoiding excessive oxidative stress and cell death. This concept appears especially relevant in the context of glioblastoma multiforme (GBM), the most aggressive form of brain tumor characterized by significant heterogeneity, which contributes to treatment resistance and tumor recurrence. From this viewpoint, this study aims to investigate whether gene regulatory networks can effectively capture the diverse redox states associated with the primary phenotypes of GBM. Methods: In this study, we utilized publicly available GBM datasets along with proprietary bulk sequencing data. Employing computational analysis and bioinformatics tools, we stratified GBM based on their antioxidant capacities and evaluated the distinctive functionalities and prognostic values of distinct transcriptional networks in silico. Results: We established three distinct transcriptional co-expression networks and signatures (termed clusters C1, C2, and C3) with distinct antioxidant potential in GBM cancer cells. Functional analysis of each cluster revealed that C1 exhibits strong antioxidant properties, C2 is marked with a discrepant inflammatory trait and C3 was identified as the cluster with the weakest antioxidant capacity. Intriguingly, C2 exhibited a strong correlation with the highly aggressive mesenchymal subtype of GBM. Furthermore, this cluster holds substantial prognostic importance: patients with higher gene set variation analysis (GSVA) scores of the C2 signature exhibited adverse outcomes in overall and progression-free survival. Conclusion: In summary, we provide a set of transcriptional signatures that unveil the antioxidant potential of GBM, offering a promising prognostic application and a guide for therapeutic strategies in GBM therapy.


Assuntos
Antioxidantes , Neoplasias Encefálicas , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Glioblastoma , Oxirredução , Fenótipo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Antioxidantes/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Biologia Computacional/métodos , Prognóstico , Perfilação da Expressão Gênica , Transcriptoma
2.
Cell Rep ; 43(4): 114020, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38554280

RESUMO

Lymphatic endothelial cells (LECs) of the lymph node (LN) parenchyma orchestrate leukocyte trafficking and peripheral T cell dynamics. T cell responses to immunotherapy largely rely on peripheral T cell recruitment in tumors. Yet, a systematic and molecular understanding of how LECs within the LNs control T cell dynamics under steady-state and tumor-bearing conditions is lacking. Intravital imaging combined with immune phenotyping shows that LEC-specific deletion of the essential autophagy gene Atg5 alters intranodal positioning of lymphocytes and accrues their persistence in the LNs by increasing the availability of the main egress signal sphingosine-1-phosphate. Single-cell RNA sequencing of tumor-draining LNs shows that loss of ATG5 remodels niche-specific LEC phenotypes involved in molecular pathways regulating lymphocyte trafficking and LEC-T cell interactions. Functionally, loss of LEC autophagy prevents recruitment of tumor-infiltrating T and natural killer cells and abrogates response to immunotherapy. Thus, an LEC-autophagy program boosts immune-checkpoint responses by guiding systemic T cell dynamics.


Assuntos
Autofagia , Inibidores de Checkpoint Imunológico , Linfonodos , Esfingosina/análogos & derivados , Linfócitos T , Autofagia/efeitos dos fármacos , Animais , Linfonodos/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Camundongos Endogâmicos C57BL , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Células Endoteliais/metabolismo , Esfingosina/farmacologia , Esfingosina/metabolismo , Humanos , Lisofosfolipídeos/metabolismo , Imunoterapia/métodos , Movimento Celular
3.
EMBO Mol Med ; 15(12): e18028, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38009521

RESUMO

Tumor endothelial cells (TECs) actively repress inflammatory responses and maintain an immune-excluded tumor phenotype. However, the molecular mechanisms that sustain TEC-mediated immunosuppression remain largely elusive. Here, we show that autophagy ablation in TECs boosts antitumor immunity by supporting infiltration and effector function of T-cells, thereby restricting melanoma growth. In melanoma-bearing mice, loss of TEC autophagy leads to the transcriptional expression of an immunostimulatory/inflammatory TEC phenotype driven by heightened NF-kB and STING signaling. In line, single-cell transcriptomic datasets from melanoma patients disclose an enriched InflammatoryHigh /AutophagyLow TEC phenotype in correlation with clinical responses to immunotherapy, and responders exhibit an increased presence of inflamed vessels interfacing with infiltrating CD8+ T-cells. Mechanistically, STING-dependent immunity in TECs is not critical for the immunomodulatory effects of autophagy ablation, since NF-kB-driven inflammation remains functional in STING/ATG5 double knockout TECs. Hence, our study identifies autophagy as a principal tumor vascular anti-inflammatory mechanism dampening melanoma antitumor immunity.


Assuntos
Melanoma , Humanos , Camundongos , Animais , Melanoma/patologia , Células Endoteliais/metabolismo , Linfócitos T CD8-Positivos , NF-kappa B/metabolismo , Autofagia , Imunoterapia , Microambiente Tumoral
4.
Sci Transl Med ; 15(691): eadd1016, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37043555

RESUMO

Clinically relevant immunological biomarkers that discriminate between diverse hypofunctional states of tumor-associated CD8+ T cells remain disputed. Using multiomics analysis of CD8+ T cell features across multiple patient cohorts and tumor types, we identified tumor niche-dependent exhausted and other types of hypofunctional CD8+ T cell states. CD8+ T cells in "supportive" niches, like melanoma or lung cancer, exhibited features of tumor reactivity-driven exhaustion (CD8+ TEX). These included a proficient effector memory phenotype, an expanded T cell receptor (TCR) repertoire linked to effector exhaustion signaling, and a cancer-relevant T cell-activating immunopeptidome composed of largely shared cancer antigens or neoantigens. In contrast, "nonsupportive" niches, like glioblastoma, were enriched for features of hypofunctionality distinct from canonical exhaustion. This included immature or insufficiently activated T cell states, high wound healing signatures, nonexpanded TCR repertoires linked to anti-inflammatory signaling, high T cell-recognizable self-epitopes, and an antiproliferative state linked to stress or prodeath responses. In situ spatial mapping of glioblastoma highlighted the prevalence of dysfunctional CD4+:CD8+ T cell interactions, whereas ex vivo single-cell secretome mapping of glioblastoma CD8+ T cells confirmed negligible effector functionality and a promyeloid, wound healing-like chemokine profile. Within immuno-oncology clinical trials, anti-programmed cell death protein 1 (PD-1) immunotherapy facilitated glioblastoma's tolerogenic disparities, whereas dendritic cell (DC) vaccines partly corrected them. Accordingly, recipients of a DC vaccine for glioblastoma had high effector memory CD8+ T cells and evidence of antigen-specific immunity. Collectively, we provide an atlas for assessing different CD8+ T cell hypofunctional states in immunogenic versus nonimmunogenic cancers.


Assuntos
Glioblastoma , Neoplasias Pulmonares , Humanos , Linfócitos T CD8-Positivos , Glioblastoma/metabolismo , Multiômica , Receptores de Antígenos de Linfócitos T/metabolismo
5.
Trends Biochem Sci ; 46(12): 960-975, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34384657

RESUMO

Intracellular iron fulfills crucial cellular processes, including DNA synthesis and mitochondrial metabolism, but also mediates ferroptosis, a regulated form of cell death driven by lipid-based reactive oxygen species (ROS). Beyond their established role in degradation and recycling, lysosomes occupy a central position in iron homeostasis and integrate metabolic and cell death signals emanating from different subcellular sites. We discuss the central role of the lysosome in preserving iron homeostasis and provide an integrated outlook of the regulatory circuits coupling the lysosomal system to the control of iron trafficking, interorganellar crosstalk, and ferroptosis induction. We also discuss novel studies unraveling how deregulated lysosomal iron-handling functions contribute to cancer, neurodegeneration, and viral infection, and can be harnessed for therapeutic interventions.


Assuntos
Ferroptose , Morte Celular/fisiologia , Ferro/metabolismo , Lisossomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
Cancers (Basel) ; 12(7)2020 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-32664705

RESUMO

Treatment of chronic lymphocytic leukemia has advanced substantially as our understanding of the kinase signal transduction pathways driven by the B cell receptor (BcR) has developed. Particularly, understanding the role of Bruton tyrosine kinase and phosphatidyl inositol 3 kinase delta in driving prosurvival signal transduction in chronic lymphocytic leukemia (CLL) cells and their targeting with pharmacological inhibitors (ibrutinib and idelalisib, respectively) has improved patient outcomes significantly. The kinase signaling pathway induced by the BcR is highly complex and has multiple interconnecting branches mediated by tyrosine and serine/threonine kinases activated downstream of the BcR. There is a high level of redundancy in the biological responses, with several BcR-signaling kinases driving nuclear factor kappa B activation or inducing antiapoptotic Bcl-2 genes. Accordingly, common gene targets of BcR-signaling kinases may serve as biomarkers indicating enhanced BCR-signaling and aggressive disease progression. This study used a gene expression correlation analysis of malignant B cell lines and primary CLL cells to identify genes whose expression correlated with BCR-signaling kinases overexpressed and/or overactivated in CLL, namely: AKT1, AKT2, BTK, MAPK1, MAPK3, PI3KCD and ZAP70. The analysis identified a 32-gene signature with a strong prognostic potential and DNPEP, the gene coding for aspartic aminopeptidase, as a predictor of aggressive CLL. DNPEP gene expression correlated with MAPK3, PI3KCD, and ZAP70 expression and, in the primary CLL test dataset, showed a strong prognostic potential. The inhibition of DNPEP with a pharmacological inhibitor enhanced the cytotoxic potential of idelalisib and ibrutinib, indicating a biological functionality of DNPEP in CLL. DNPEP, as an aminopeptidase, contributes to the maintenance of the free amino acid pool in CLL cells found to be an essential process for the survival of many cancer cell types, and thus, these results warrant further research into the exploitation of aminopeptidase inhibitors in the treatment of drug-resistant CLL.

7.
Oncoimmunology ; 6(12): e1386829, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29209573

RESUMO

The expression "immunogenic cell death" (ICD) refers to a functionally unique form of cell death that facilitates (instead of suppressing) a T cell-dependent immune response specific for dead cell-derived antigens. ICD critically relies on the activation of adaptive responses in dying cells, culminating with the exposure or secretion of immunostimulatory molecules commonly referred to as "damage-associated molecular patterns". Only a few agents can elicit bona fide ICD, including some clinically established chemotherapeutics such as doxorubicin, epirubicin, idarubicin, mitoxantrone, bleomycin, bortezomib, cyclophosphamide and oxaliplatin. In this Trial Watch, we discuss recent progress on the development of ICD-inducing chemotherapeutic regimens, focusing on studies that evaluate clinical efficacy in conjunction with immunological biomarkers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA