Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Sci Transl Med ; 13(623): eabc7367, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34878822

RESUMO

Skeletal muscle displays remarkable plasticity upon exercise and is also one of the organs most affected by aging. Despite robust evidence that aging is associated with loss of fast-twitch (type II) muscle fibers, the underlying mechanisms remain to be elucidated. Here, we identified an exercise-induced long noncoding RNA, CYTOR, whose exercise responsiveness was conserved in human and rodents. Cytor overexpression in mouse myogenic progenitor cells enhanced myogenic differentiation by promoting fast-twitch cell fate, whereas Cytor knockdown deteriorated expression of mature type II myotubes. Skeletal muscle Cytor expression was reduced upon mouse aging, and Cytor expression in young mice was required to maintain proper muscle morphology and function. In aged mice, rescuing endogenous Cytor expression using adeno-associated virus serotype 9 delivery of CRISPRa reversed the age-related decrease in type II fibers and improved muscle mass and function. In humans, CYTOR expression correlated with type II isoform expression and was decreased in aged myoblasts. Increased CYTOR expression, mediated by a causal cis­expression quantitative trait locus located within a CYTOR skeletal muscle enhancer element, was associated with improved 6-min walk performance in aged individuals from the Helsinki Birth Cohort Study. Direct CYTOR overexpression using CRISPRa in aged human donor myoblasts enhanced expression of type II myosin isoforms. Mechanistically, Cytor reduced chromatin accessibility and occupancy at binding motifs of the transcription factor Tead1 by binding, and hence sequestering, Tead1. In conclusion, the long noncoding RNA Cytor was found to be a regulator of fast-twitch myogenesis in aging.


Assuntos
RNA Longo não Codificante , Envelhecimento/genética , Animais , Diferenciação Celular/genética , Estudos de Coortes , Humanos , Camundongos , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
2.
Nat Metab ; 2(8): 653-654, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32694822
3.
Mol Metab ; 39: 101012, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32408015

RESUMO

OBJECTIVE: We tested the hypothesis that exercise training would attenuate metabolic impairment in a model of severe cancer cachexia. METHODS: We used multiple in vivo and in vitro methods to explore the mechanisms underlying the beneficial effects induced by exercise training in tumor-bearing rats. RESULTS: Exercise training improved running capacity, prolonged lifespan, reduced oxidative stress, and normalized muscle mass and contractile function in tumor-bearing rats. An unbiased proteomic screening revealed COP9 signalosome complex subunit 2 (COPS2) as one of the most downregulated proteins in skeletal muscle at the early stage of cancer cachexia. Exercise training normalized muscle COPS2 protein expression in tumor-bearing rats and mice. Lung cancer patients with low endurance capacity had low muscle COPS2 protein expression as compared to age-matched control subjects. To test whether decrease in COPS2 protein levels could aggravate or be an intrinsic compensatory mechanism to protect myotubes from cancer effects, we performed experiments in vitro using primary myotubes. COPS2 knockdown in human myotubes affected multiple cellular pathways, including regulation of actin cytoskeleton. Incubation of cancer-conditioned media in mouse myotubes decreased F-actin expression, which was partially restored by COPS2 knockdown. Direct repeat 4 (DR4) response elements have been shown to positively regulate gene expression. COPS2 overexpression decreased the DR4 activity in mouse myoblasts, and COPS2 knockdown inhibited the effects of cancer-conditioned media on DR4 activity. CONCLUSIONS: These studies demonstrated that exercise training may be an important adjuvant therapy to counteract cancer cachexia and uncovered novel mechanisms involving COPS2 to regulate myotube homeostasis in cancer cachexia.


Assuntos
Complexo do Signalossomo COP9/metabolismo , Músculo Esquelético/metabolismo , Neoplasias/metabolismo , Estresse Oxidativo , Condicionamento Físico Animal , Proteínas Repressoras/metabolismo , Animais , Biomarcadores , Complexo do Signalossomo COP9/genética , Caquexia/etiologia , Caquexia/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Modelos Animais de Doenças , Metabolismo Energético , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Mioblastos/metabolismo , Neoplasias/complicações , Oxirredução , Proteômica/métodos , Ratos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais
4.
Sci Rep ; 8(1): 17772, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30538258

RESUMO

Given the association between high aerobic capacity and the prevention of metabolic diseases, elucidating the mechanisms by which high aerobic capacity regulates whole-body metabolic homeostasis is a major research challenge. Oxidative post-translational modifications (Ox-PTMs) of proteins can regulate cellular homeostasis in skeletal and cardiac muscles, but the relationship between Ox-PTMs and intrinsic components of oxidative energy metabolism is still unclear. Here, we evaluated the Ox-PTM profile in cardiac and skeletal muscles of rats bred for low (LCR) and high (HCR) intrinsic aerobic capacity. Redox proteomics screening revealed different cysteine (Cys) Ox-PTM profile between HCR and LCR rats. HCR showed a higher number of oxidized Cys residues in skeletal muscle compared to LCR, while the opposite was observed in the heart. Most proteins with differentially oxidized Cys residues in the skeletal muscle are important regulators of oxidative metabolism. The most oxidized protein in the skeletal muscle of HCR rats was malate dehydrogenase (MDH1). HCR showed higher MDH1 activity compared to LCR in skeletal, but not cardiac muscle. These novel findings indicate a clear association between Cys Ox-PTMs and aerobic capacity, leading to novel insights into the role of Ox-PTMs as an essential signal to maintain metabolic homeostasis.


Assuntos
Cisteína/metabolismo , Metabolismo Energético/fisiologia , Estresse Oxidativo/fisiologia , Animais , Respiração Celular , Tolerância ao Exercício/fisiologia , Malato Desidrogenase/metabolismo , Masculino , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Oxirredução , Condicionamento Físico Animal/fisiologia , Resistência Física/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Ratos , Corrida/fisiologia
5.
J Transl Med ; 13: 76, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25889299

RESUMO

BACKGROUND: Activation of protein kinase AKT is required for cardioprotection by ischemic preconditioning, and transgenic overexpression of AKT protects the heart against ischemia. However, it is unknown whether acute pharmacological activation of AKT alone, using a therapeutically relevant strategy, induces cardioprotection. In this study we provide the first evidence to clarify this question. METHODS: We used a recently described specific activator of AKT, the small molecule SC79, to treat rat hearts submitted to ischemia and reperfusion. Initially, isolated rat hearts were perfused with increasing doses of SC79 to verify the magnitude of AKT activation. Low and high doses were determined and used to treat hearts submitted to ischemia (35 minutes) and reperfusion (60 minutes), in a randomized and blinded design. AKT activation was verified by western immunobloting. Metabolic profile was determined by cardiac ATP content and mitochondrial enzyme activity, while cytosolic levels of cytochrome C and caspase-3 activity were used as markers of apoptosis. Ischemic injury was assessed by quantification of infarct size and cardiac release of creatine kinase and lactate dehydrogenase. RESULTS: SC79 activated cardiac AKT within 30 minutes in a dose-dependent fashion. ATP content was largely reduced by ischemia, but was not rescued by SC79. Similarly, mitochondrial enzyme activity was not affected by SC79. SC79 administered before ischemia or at reperfusion did not prevent cytosolic accumulation of cytochrome C and overactivation of caspase-3. Finally, SC79 failed to reduce infarct size or release of cardiac injury biomarkers at reperfusion. CONCLUSION: We conclude that selective AKT activation by the synthetic molecule SC79 does not protect the rat heart against ischemic injury, indicating that acute pharmacological activation of AKT is not sufficient for cardioprotection.


Assuntos
Ativadores de Enzimas/farmacologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Creatina Quinase/metabolismo , Ativação Enzimática/efeitos dos fármacos , Feminino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/enzimologia , Miocárdio/patologia , Ratos Sprague-Dawley
6.
Int J Cardiol ; 177(2): 409-17, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25456576

RESUMO

BACKGROUND: Understanding the intracellular mechanisms induced by remote ischemic preconditioning (RIPC) in the human left ventricle opens new possibilities for development of pharmacological cardioprotection against ischemia and reperfusion injury. In this study we investigated the effects of RIPC on mitochondrial function, activation of pro-survival protein kinase Akt and microRNA expression in left ventricular biopsies from patients undergoing coronary artery bypass surgery (CABG). METHODS: Sixty patients were randomized to control (n=30) or RIPC (n=30). A blood pressure cuff was applied to the arm of all patients preoperatively. The cuff remained deflated in control group, whereas RIPC was performed by 3 cycles of cuff inflation to 200 mm Hg for 5 min, separated by 5 min deflation intervals. Left ventricular biopsies were obtained before and 15 min after aortic declamping. The primary outcome was mitochondrial respiration measured in situ. Secondary outcomes were activation of protein kinase Akt, assessed by western immunoblotting, and expression of microRNAs assessed by array and real-time polymerase chain reaction. RESULTS: Mitochondrial respiration was preserved during surgery in patients receiving RIPC (+0.2 µmol O2/min/g, p=0.69), and reduced by 15% in controls (-1.5 µmol O2/min/g, p=0.02). Furthermore, RIPC activated protein kinase Akt before aortic clamping (difference from control +43.3%, p=0.04), followed by increased phosphorylation of Akt substrates at reperfusion (+26.8%, p<0.01). No differences were observed in microRNA expression. CONCLUSIONS: RIPC preserves mitochondrial function and activates pro-survival protein kinase Akt in left ventricle of patients undergoing CABG. Modulation of mitochondrial function and Akt activation should be further explored as cardioprotective drug targets. CLINICAL TRIAL REGISTRATION: http://www.clinicaltrials.gov, unique identifier: NCT01308138.


Assuntos
Ponte de Artéria Coronária/métodos , Ventrículos do Coração/enzimologia , Precondicionamento Isquêmico Miocárdico/métodos , Mitocôndrias/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Robótica/métodos , Idoso , Método Duplo-Cego , Ativação Enzimática/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Monitorização Intraoperatória/métodos , Estudos Prospectivos
7.
Int J Cardiol ; 175(3): 499-507, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25023789

RESUMO

BACKGROUND: Skeletal muscle wasting is associated with poor prognosis and increased mortality in heart failure (HF) patients. Glycolytic muscles are more susceptible to catabolic wasting than oxidative ones. This is particularly important in HF since glycolytic muscle wasting is associated with increased levels of reactive oxygen species (ROS). However, the main ROS sources involved in muscle redox imbalance in HF have not been characterized. Therefore, we hypothesized that NADPH oxidases would be hyperactivated in the plantaris muscle of infarcted rats, contributing to oxidative stress and hyperactivation of the ubiquitin-proteasome system (UPS), ultimately leading to atrophy. METHODS: Rats were submitted to myocardial infarction (MI) or Sham surgery. Four weeks after surgery, MI and Sham groups underwent eight weeks of treatment with apocynin, a NADPH oxidase inhibitor, or placebo. NADPH oxidase activity, oxidative stress markers, NF-κB activity, p38 MAPK phosphorylation, mRNA and sarcolemmal protein levels of NADPH oxidase components, UPS activation and fiber cross-sectional area were assessed in the plantaris muscle. RESULTS: The plantaris of MI rats displayed atrophy associated with increased Nox2 mRNA and sarcolemmal protein levels, NADPH oxidase activity, ROS production, lipid hydroperoxides levels, NF-κB activity, p38 MAPK phosphorylation and UPS activation. NADPH oxidase inhibition by apocynin prevented MI-induced skeletal muscle atrophy by reducing ROS production, NF-κB hyperactivation, p38 MAPK phosphorylation and proteasomal hyperactivity. CONCLUSION: Our data provide evidence for NADPH oxidase hyperactivation as an important source of ROS production leading to plantaris atrophy in heart failure rats, suggesting that this enzyme complex plays key role in skeletal muscle wasting in HF.


Assuntos
Insuficiência Cardíaca/enzimologia , Glicoproteínas de Membrana/metabolismo , Músculo Esquelético/enzimologia , Atrofia Muscular/enzimologia , NADPH Oxidases/metabolismo , Animais , Ativação Enzimática/fisiologia , Insuficiência Cardíaca/patologia , Masculino , Músculo Esquelético/patologia , Atrofia Muscular/patologia , NADPH Oxidase 2 , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
8.
J Appl Physiol (1985) ; 114(8): 1029-41, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23429866

RESUMO

Poor skeletal muscle performance was shown to strongly predict mortality and long-term prognosis in a variety of diseases, including heart failure (HF). Despite the known benefits of aerobic exercise training (AET) in improving the skeletal muscle phenotype in HF, the optimal exercise intensity to elicit maximal outcomes is still under debate. Therefore, the aim of the present study was to compare the effects of high-intensity AET with those of a moderate-intensity protocol on skeletal muscle of infarcted rats. Wistar rats underwent myocardial infarction (MI) or sham surgery. MI groups were submitted either to an untrained (MI-UNT); moderate-intensity (MI-CMT, 60% Vo(2)(max)); or matched volume, high-intensity AET (MI-HIT, intervals at 85% Vo(2)(max)) protocol. High-intensity AET (HIT) was superior to moderate-intensity AET (CMT) in improving aerobic capacity, assessed by treadmill running tests. Cardiac contractile function, measured by echocardiography, was equally improved by both AET protocols. CMT and HIT prevented the MI-induced decay of skeletal muscle citrate synthase and hexokinase maximal activities, and increased glycogen content, without significant differences between protocols. Similar improvements in skeletal muscle redox balance and deactivation of the ubiquitin-proteasome system were also observed after CMT and HIT. Such intracellular findings were accompanied by prevented skeletal muscle atrophy in both MI-CMT and MI-HIT groups, whereas no major differences were observed between protocols. Taken together, our data suggest that despite superior effects of HIT in improving functional capacity, skeletal muscle adaptations were remarkably similar among protocols, leading to the conclusion that skeletal myopathy in infarcted rats was equally prevented by either moderate-intensity or high-intensity AET.


Assuntos
Terapia por Exercício/métodos , Contração Muscular , Músculo Esquelético/fisiopatologia , Atrofia Muscular/prevenção & controle , Infarto do Miocárdio/terapia , Animais , Citrato (si)-Sintase/metabolismo , Modelos Animais de Doenças , Tolerância ao Exercício , Glicogênio/metabolismo , Hexoquinase/metabolismo , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/diagnóstico por imagem , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatologia , Contração Miocárdica , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Oxirredução , Consumo de Oxigênio , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos , Ratos Wistar , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA