Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167222, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38729530

RESUMO

Alzheimer's disease (AD) research started several decades ago and despite the many efforts employed to develop new treatments or approaches to slow and/or revert disease progression, AD treatment remains an unsolved issue. Knowing that mitochondria loss of function is a central hub for many AD-associated pathophysiological processes, there has been renewed interest in exploring mitochondria as targets for intervention. In this perspective, the present study was aimed to investigate the possible beneficial effects of 2,4 dinitrophenol (DNP), a mitochondrial uncoupler agent, in an in vitro model of AD. Retinoic acid-induced differentiated SH-SY5Y cells were incubated with okadaic acid (OA), a neurotoxin often used as an AD experimental model, and/or with DNP. OA caused a decrease in neuronal cells viability, induced multiple mitochondrial anomalies including increased levels of reactive oxygen species, decreased bioenergetics and mitochondria content markers, and an altered mitochondria morphology. OA-treated cells also presented increased lipid peroxidation levels, and overactivation of tau related kinases (GSK3ß, ERK1/2 and AMPK) alongside with a significant augment in tau protein phosphorylation levels. Interestingly, DNP co-treatment ameliorated and rescued OA-induced detrimental effects not only on mitochondria but also but also reinstated signaling pathways homeostasis and ameliorated tau pathology. Overall, our results show for the first time that DNP has the potential to preserve mitochondria homeostasis under a toxic insult, like OA exposure, as well as to reestablish cellular signaling homeostasis. These observations foster the idea that DNP, as a mitochondrial modulator, might represent a new avenue for treatment of AD.


Assuntos
2,4-Dinitrofenol , Doença de Alzheimer , Mitocôndrias , Ácido Okadáico , Espécies Reativas de Oxigênio , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Ácido Okadáico/farmacologia , Ácido Okadáico/toxicidade , Humanos , 2,4-Dinitrofenol/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Proteínas tau/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Tretinoína/farmacologia
2.
Free Radic Biol Med ; 220: 192-206, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38734265

RESUMO

Enhanced formation of advanced glycation end products (AGEs) is a pivotal factor in diabetes pathophysiology, increasing the risk of diabetic complications. Nε-carboxy-methyl-lysine (CML) is one of the most relevant AGEs found in several tissues including the peripheral blood of diabetic subjects. Despite recognizing diabetes as a risk factor for neurodegenerative diseases and the documented role of mitochondrial abnormalities in this connection, the impact of CML on neuronal mitochondria and its contribution to diabetes-related neurodegeneration remain uncertain. Here, we evaluated the effects of CML in differentiated SH-SY5Y human neuroblastoma cells. Due to the association between mitochondrial dysfunction and increased production of reactive oxygen species (ROS), the possible protective effects of MitoTempo, a mitochondria-targeted antioxidant, were also evaluated. Several parameters were assessed namely cells viability, mitochondrial respiration and membrane potential, ATP and ROS production, Ca2+ levels, mitochondrial biogenesis and dynamics, mito/autophagy, endoplasmic reticulum (ER) stress and amyloidogenic and synaptic integrity markers. CML caused pronounced mitochondrial defects characterized by a significant decrease in mitochondrial respiration, membrane potential, and ATP production and an increase in ROS production. An accumulation of individual mitochondria associated with disrupted mitochondrial networks was also observed. Furthermore, CML caused mitochondrial fusion and a decrease in mitochondrial mass and induced ER stress associated with altered unfolded protein response and Ca2+ dyshomeostasis. Moreover, CML increased the protein levels of ß-secretase-1 and amyloid precursor protein, key proteins involved in Alzheimer's Disease pathophysiology. All these effects contributed to the decline in neuronal cells viability. Notable, MitoTempo was able to counteract most of CML-mediated mitochondrial defects and neuronal cells injury and death. Overall, these findings suggest that CML induces pronounced defects in neuronal mitochondria and ER stress, predisposing to neurodegenerative events. More, our observations suggest that MitoTempo holds therapeutic promise in mitigating CML-induced mitochondrial imbalance and neuronal damage and death.


Assuntos
Estresse do Retículo Endoplasmático , Lisina , Potencial da Membrana Mitocondrial , Mitocôndrias , Neurônios , Compostos Organofosforados , Espécies Reativas de Oxigênio , Humanos , Lisina/análogos & derivados , Lisina/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Neurônios/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Compostos Organofosforados/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Produtos Finais de Glicação Avançada/metabolismo , Homeostase , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Neuroblastoma/patologia , Neuroblastoma/metabolismo , Piperidinas
3.
J Neurochem ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38327008

RESUMO

The disruption of mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) plays a relevant role in Alzheimer's disease (AD). MAMs have been implicated in neuronal dysfunction and death since it is associated with impairment of functions regulated in this subcellular domain, including lipid synthesis and trafficking, mitochondria dysfunction, ER stress-induced unfolded protein response (UPR), apoptosis, and inflammation. Since MAMs play an important role in lipid metabolism, in this study we characterized and investigated the lipidome alterations at MAMs in comparison with other subcellular fractions, namely microsomes and mitochondria, using an in vitro model of AD, namely the mouse neuroblastoma cell line (N2A) over-expressing the APP familial Swedish mutation (APPswe) and the respective control (WT) cells. Phospholipids (PLs) and fatty acids (FAs) were isolated from the different subcellular fractions and analyzed by HILIC-LC-MS/MS and GC-MS, respectively. In this in vitro AD model, we observed a down-regulation in relative abundance of some phosphatidylcholine (PC), lysophosphatidylcholine (LPC), and lysophosphatidylethanolamine (LPE) species with PUFA and few PC with saturated and long-chain FA. We also found an up-regulation of CL, and antioxidant alkyl acyl PL. Moreover, multivariate analysis indicated that each organelle has a specific lipid profile adaptation in N2A APPswe cells. In the FAs profile, we found an up-regulation of C16:0 in all subcellular fractions, a decrease of C18:0 levels in total fraction (TF) and microsomes fraction, and a down-regulation of 9-C18:1 was also found in mitochondria fraction in the AD model. Together, these results suggest that the over-expression of the familial APP Swedish mutation affects lipid homeostasis in MAMs and other subcellular fractions and supports the important role of lipids in AD physiopathology.

4.
Drug Discov Today ; 28(10): 103644, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37244566

RESUMO

Glutaminyl cyclase (QC) activity has been identified as a key effector in distinct biological processes. Human glutaminyl-peptide cyclotransferase (QPCT) and glutaminyl-peptide cyclotransferase-like (QPCTL) are considered attractive therapeutic targets in many human disorders, such as neurodegenerative diseases, and a range of inflammatory conditions, as well as for cancer immunotherapy, because of their capacity to modulate cancer immune checkpoint proteins. In this review, we explore the biological functions and structures of QPCT/L enzymes and highlight their therapeutic relevance. We also summarize recent developments in the discovery of small-molecule inhibitors targeting these enzymes, including an overview of preclinical and clinical studies.


Assuntos
Doença de Alzheimer , Aminoaciltransferases , Neoplasias , Humanos , Imunoterapia , Doença de Alzheimer/tratamento farmacológico
5.
Cell Mol Life Sci ; 79(9): 487, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35984507

RESUMO

Diabetes has been associated with an increased risk of cognitive decline and dementia. However, the mechanisms underlying this association remain unclear and no effective therapeutic interventions exist. Accumulating evidence demonstrates that mitochondrial defects are a key feature of diabetes contributing to neurodegenerative events. It has also been demonstrated that the putative tumor suppressor WW domain-containing oxidoreductase 1 (WWOX) can interact with mitochondria in several pathological conditions. However, its role in diabetes-associated neurodegeneration remains unknown. So, this study aimed to evaluate the role of WWOX activation in high glucose-induced neuronal damage and death. Our experiments were mainly performed in differentiated SH-SY5Y neuroblastoma cells exposed to high glucose and treated (or not) with Zfra1-31, the specific inhibitor of WWOX. Several parameters were analyzed namely cell viability, WWOX activation (tyrosine 33 residue phosphorylation), mitochondrial function, reactive oxygen species (ROS) production, biogenesis, and dynamics, autophagy and oxidative stress/damage. The levels of the neurotoxic proteins amyloid ß (Aß) and phosphorylated Tau (pTau) and of synaptic integrity markers were also evaluated. We observed that high glucose increased the levels of activated WWOX. Interestingly, brain cortical and hippocampal homogenates from young (6-month old) diabetic GK rats showed increased levels of activated WWOX compared to older GK rats (12-month old) suggesting that WWOX plays an early role in the diabetic brain. In neuronal cells, high glucose impaired mitochondrial respiration, dynamics and biogenesis, increased mitochondrial ROS production and decreased mitochondrial membrane potential and ATP production. More, high glucose augmented oxidative stress/damage and the levels of Aß and pTau proteins and affected autophagy, contributing to the loss of synaptic integrity and cell death. Of note, the activation of WWOX preceded mitochondrial dysfunction and cell death. Importantly, the inhibition of WWOX with Zfra1-31 reversed, totally or partially, the alterations promoted by high glucose. Altogether our observations demonstrate that under high glucose conditions WWOX activation contributes to mitochondrial anomalies and neuronal damage and death, which suggests that WWOX is a potential therapeutic target for early interventions. Our findings also support the efficacy of Zfra1-31 in treating hyperglycemia/diabetes-associated neurodegeneration.


Assuntos
Peptídeos beta-Amiloides , Mitocôndrias , Neuroblastoma , Oxidorredutase com Domínios WW , Animais , Humanos , Ratos , Peptídeos beta-Amiloides/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Homeostase , Mitocôndrias/metabolismo , Neuroblastoma/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Oxidorredutase com Domínios WW/genética , Oxidorredutase com Domínios WW/metabolismo
6.
Biomedicines ; 9(8)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34440085

RESUMO

Alzheimer's disease (AD) is characterized by the accumulation of extracellular plaques composed by amyloid-ß (Aß) and intracellular neurofibrillary tangles of hyperphosphorylated tau. AD-related neurodegenerative mechanisms involve early changes of mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) and impairment of cellular events modulated by these subcellular domains. In this study, we characterized the structural and functional alterations at MAM, mitochondria, and ER/microsomes in a mouse neuroblastoma cell line (N2A) overexpressing the human amyloid precursor protein (APP) with the familial Swedish mutation (APPswe). Proteins levels were determined by Western blot, ER-mitochondria contacts were quantified by transmission electron microscopy, and Ca2+ homeostasis and mitochondria function were analyzed using fluorescent probes and Seahorse assays. In this in vitro AD model, we found APP accumulated in MAM and mitochondria, and altered levels of proteins implicated in ER-mitochondria tethering, Ca2+ signaling, mitochondrial dynamics, biogenesis and protein import, as well as in the stress response. Moreover, we observed a decreased number of close ER-mitochondria contacts, activation of the ER unfolded protein response, reduced Ca2+ transfer from ER to mitochondria, and impaired mitochondrial function. Together, these results demonstrate that several subcellular alterations occur in AD-like neuronal cells, which supports that the defective ER-mitochondria crosstalk is an important player in AD physiopathology.

7.
Int J Mol Sci ; 21(5)2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143329

RESUMO

Alzheimer's disease (AD) is the most common form of dementia worldwide, being characterized by the deposition of senile plaques, neurofibrillary tangles (enriched in the amyloid beta (Aß) peptide and hyperphosphorylated tau (p-tau), respectively) and memory loss. Aging, type 2 diabetes (T2D) and female sex (especially after menopause) are risk factors for AD, but their crosslinking mechanisms remain unclear. Most clinical trials targeting AD neuropathology failed and it remains incurable. However, evidence suggests that effective anti-T2D drugs, such as the GLP-1 mimetic and neuroprotector liraglutide, can be also efficient against AD. Thus, we aimed to study the benefits of a peripheral liraglutide treatment in AD female mice. We used blood and brain cortical lysates from 10-month-old 3xTg-AD female mice, treated for 28 days with liraglutide (0.2 mg/kg, once/day) to evaluate parameters affected in AD (e.g., Aß and p-tau, motor and cognitive function, glucose metabolism, inflammation and oxidative/nitrosative stress). Despite the limited signs of cognitive changes in mature female mice, liraglutide only reduced their cortical Aß1-42 levels. Liraglutide partially attenuated brain estradiol and GLP-1 and activated PKA levels, oxidative/nitrosative stress and inflammation in these AD female mice. Our results support the earlier use of liraglutide as a potential preventive/therapeutic agent against the accumulation of the first neuropathological features of AD in females.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Hipoglicemiantes/farmacologia , Inflamação/metabolismo , Liraglutida/farmacologia , Fragmentos de Peptídeos/metabolismo , Animais , Comportamento Animal , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Estradiol/metabolismo , Feminino , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glicólise , Aprendizagem em Labirinto , Transtornos da Memória , Camundongos , Emaranhados Neurofibrilares/metabolismo , Estresse Nitrosativo , Estresse Oxidativo , Fenótipo , Placa Amiloide/metabolismo
8.
J Nutr Biochem ; 55: 165-177, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29525608

RESUMO

The development of effective medicines to break or delay the progressive brain degeneration underlying cognitive decline and dementia that characterize Alzheimer's disease (AD) is one of the greatest challenges of our time. In the present work, a selective pool of polyphenols, obtained from the white wine by adsorption to polyvinylpyrrolidone polymer (PVPP), was used to prepare a polyphenols-enriched diet, supplementing the drinking water with 100 mg/L (expressed as gallic acid equivalent) of wine polyphenolic extract. The impact of the daily consumption of water supplemented with polyphenols for 2 months on brain of 10-month-old 3xTg-AD and NonTg mice was evaluated, considering effects on the redox state of cells, levels of amyloid-ß peptides, mitochondrial bioenergetics and fatty acid profile of whole membrane phospholipids. The polyphenols-enriched diet promotes brain accumulation of catechin and hydroxybenzoic acid derivatives, and modulates the redox state of 3xTg-AD brain cells, increasing both glutathione/glutathione disulfide ratio and catalase activity and decreasing membrane lipids oxidation. Additionally, the functional diet decreases the 3xTg-AD brain levels of both amyloid-ß peptides, Aß1-40 and Aß1-42. However, the brain mitochondrial bioenergetic dysfunction of 3xTg-AD animals was not attenuated by the polyphenols-enriched diet. Lipidomic studies showed that this functional diet modulates membrane lipid composition of brain cells, increasing C22:6n-3 (docosahexanoic acid) and decreasing C20:4n-6 (arachidonic acid) levels, which may have beneficial impact on the chronic inflammatory process associated with AD pathology. Altogether, these results indicate that the oral administration of this polyphenols-enriched diet promotes significant benefits in multiple aspects of the pathophysiological cascade associated with the neuropathology developed by 3xTg-AD mice.


Assuntos
Doença de Alzheimer/dietoterapia , Doença de Alzheimer/patologia , Encéfalo/efeitos dos fármacos , Polifenóis/farmacologia , Vinho , Peptídeos beta-Amiloides/metabolismo , Animais , Antioxidantes/análise , Antioxidantes/química , Encéfalo/patologia , Modelos Animais de Doenças , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Fosfolipídeos/metabolismo , Polifenóis/análise , Vinho/análise
9.
Neurotox Res ; 33(2): 388-401, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28875237

RESUMO

Though glucose fluctuations have been considered as an adverse factor for the development of several diabetes-related complications, their impact in the central nervous system is still not fully elucidated. This study was conducted to evaluate the responses of neuronal cells to different glycemic exposures alongside to elucidate the role of uncoupling protein 2 (UCP2) in regulating such responses. To achieve our goals, primary cortical neurons were submitted to constant high (HG)/low (LG) or glucose level variations (GVs), and the pharmacological inhibition of UCP2 activity was performed using genipin. Results obtained show that GV decreased neuronal cells' viability, mitochondrial membrane potential, and manganese superoxide dismutase activity and increased reactive oxygen species (ROS) production. GV also caused an increase in the glutathione/glutathione disulfide ratio and in the protein expression levels of nuclear factor E2-related factor 2 (NRF2), UCP2, NADH-ubiquinone oxidoreductase chain 1 (ND1), and mitochondrially encoded cytochrome c oxidase I (MTCO1), both mitochondrial DNA encoded subunits of the electron transport chain. Contrariwise, genipin abrogated all those compensations and increased the levels of caspase 3-like activity, potentiated mitochondrial ROS levels, and the loss of neuronal synaptic integrity, decreased the protein expression levels of NRF1, and increased the protein expression levels of UCP5. Further, in the control and LG conditions, genipin increased mitochondrial ROS and the protein expression levels of UCP4, postsynaptic density protein 95 (PSD95), ND1, and MTCO1. Overall, these observations suggest that UCP2 is in the core of neuronal cell protection and/or adaptation against GV-mediated effects and that other isoforms of neuronal UCPs can be upregulated to compensate the inhibition of UCP2 activity.


Assuntos
Glucose/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Piretrinas/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/metabolismo , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Proteína Desacopladora 2/efeitos dos fármacos , Proteína Desacopladora 2/metabolismo
10.
J Alzheimers Dis ; 55(2): 749-762, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27802219

RESUMO

Previous studies demonstrated that selenium in the form of sodium selenate reduces neurofibrillary tangle formation in Alzheimer's disease models. Hyperphosphorylation of tau, which leads to formation of neurofibrillary tangles in Alzheimer's disease, is increased by endoplasmic reticulum (ER) stress. Selenoprotein S (SelS) is part of an ER membrane complex that removes misfolded proteins from the ER as a means to reduce ER stress. Selenate, as with other forms of selenium, will increase selenoprotein expression. We therefore proposed that increased SelS expression by selenate would contribute to the beneficial actions of selenate in Alzheimer's disease. SelS expression increased with ER stress and decreased under conditions of elevated glucose concentrations in the SH-SY5Y neuronal cell line. Reducing expression of SelS with siRNA promoted cell death in response to ER stress. Selenate increased SelS expression, which significantly correlated with decreased tau phosphorylation. Restricting SelS expression during ER stress conditions increased tau phosphorylation, and also promoted aggregation of phosphorylated tau in neurites and soma. In human postmortem brain, SelS expression coincided with neurofibrillary tangles, but not with amyloid-ß plaques. These results indicate that selenate can alter phosphorylation of tau by increasing expression of SelS in Alzheimer's disease and potentially other neurodegenerative disorders.


Assuntos
Encéfalo/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteínas de Membrana/farmacologia , Selenoproteínas/farmacologia , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Análise de Variância , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/fisiologia , Regulação da Expressão Gênica/genética , Glucose/farmacologia , Humanos , Leucina/genética , Proteínas de Membrana/genética , Mutação/genética , Neuroblastoma/patologia , Fosforilação/efeitos dos fármacos , Prolina/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Selenoproteínas/genética , Transfecção
11.
Int J Biochem Cell Biol ; 66: 1-10, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26148570

RESUMO

The incidence of type 2 diabetes mellitus and its prodromal stage, pre-diabetes, is rapidly increasing among young men, leading to disturbances in testosterone synthesis. However, the impact of testosterone deficiency induced by these progressive stages of diabetes on the metabolic behavior of Sertoli cells remains unknown. We evaluated the effects of testosterone deficiency associated with pre-diabetes and type 2 diabetes on Sertoli cells metabolism, by measuring (1) the expression and/or activities of glycolysis and glycogen metabolism-related proteins and (2) the metabolite secretion/consumption in Sertoli cells obtained from rat models of different development stages of the disease, to unveil the mechanisms by which testosterone deregulation may affect spermatogenesis. Glucose and pyruvate uptake were decreased in cells exposed to the testosterone concentration found in pre-diabetic rats (600nM), whereas the decreased testosterone concentrations found in type 2 diabetic rats (7nM) reversed this profile. Lactate production was not altered, although the expression and/or activity of lactate dehydrogenase and monocarboxylate transporter 4 were affected by progressive testosterone-deficiency. Sertoli cells exposed to type 2 diabetic conditions exhibited intracellular glycogen accumulation. These results illustrate that gradually reduced levels of testosterone, induced by progressive stages of diabetes mellitus, favor a metabolic reprogramming toward glycogen synthesis. Our data highlights a pivotal role for testosterone in the regulation of spermatogenesis metabolic support by Sertoli cells, particularly in individuals suffering from metabolic diseases. Such alterations may be in the basis of male subfertility/infertility associated with the progression of diabetes mellitus.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Glicogênio/biossíntese , Células de Sertoli/metabolismo , Testosterona/metabolismo , Animais , Western Blotting , Células Cultivadas , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/genética , Estradiol/sangue , Estradiol/metabolismo , Expressão Gênica , Inibinas/genética , Inibinas/metabolismo , Masculino , Estado Pré-Diabético/sangue , Estado Pré-Diabético/genética , Estado Pré-Diabético/metabolismo , Ratos , Ratos Wistar , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Testículo/metabolismo , Testosterona/sangue , Testosterona/deficiência
12.
Cell Tissue Res ; 362(2): 431-40, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26051285

RESUMO

Diabetes mellitus (DM) is a metabolic disease that has grown to pandemic proportions. Recent reports have highlighted the effect of DM on male reproductive function. Here, we hypothesize that testicular metabolism is altered in type 1 diabetic (T1D) men seeking fertility treatment. We propose to determine some metabolic fingerprints in testicular biopsies of diabetic patients. For that, testicular tissue from five normal and five type 1 diabetic men was analyzed by high-resolution magic-angle spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy. mRNA and protein expression of glucose transporters and glycolysis-related enzymes were also evaluated. Our results show that testes from diabetic men presented decreased levels of lactate, alanine, citrate and creatine. The mRNA levels of glucose transporter 1 (GLUT1) and phosphofructokinase 1 (PFK1) were decreased in testes from diabetic men but only GLUT3 presented decreased mRNA and protein levels. Lactate dehydrogenase (LDH) and glutamate pyruvate transaminase (GPT) protein levels were also found to be decreased in testes from diabetic men. Overall, our results show that T1D alters glycolysis-related transporters and enzymes, compromising lactate content in the testes. Moreover, testicular creatine content was severely depressed in T1D men. Since lactate and creatine are essential for germ cells development and support, the data discussed here open new insights into the molecular mechanism by which DM promotes subfertility/infertility in human males.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Glicólise/fisiologia , Testículo/metabolismo , Testículo/patologia , Biópsia , Diabetes Mellitus Tipo 1/patologia , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 3/metabolismo , Humanos , L-Lactato Desidrogenase/metabolismo , Masculino , Reprodução/fisiologia
13.
Br J Nutr ; 113(5): 832-42, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25716141

RESUMO

Diabetes mellitus (DM) is a major public health problem and its incidence is rising dramatically. The brain, particularly the cerebral cortex, is very susceptible to glucose fluctuations and hyperglycaemia-induced oxidative stress. Tea (Camellia sinensis (L.)) is widely consumed; however, the antidiabetic properties of white tea remain largely unexplored. In the present study, we investigated the effects of daily consumption of white tea on the cerebral cortex of prediabetic rats. The cerebral cortex metabolic profile was evaluated, and the expression levels of GLUT, phosphofructokinase-1, lactate dehydrogenase (LDH) and monocarboxylate transporter 4 were assessed. LDH activity was also determined. The cerebral cortex oxidative profile was determined by evaluating its antioxidant power, lipid peroxidation and protein oxidation levels. Catalase, glutathione, glutamate, N-acetylaspartate, aspartate, choline, γ-aminobutyric acid, taurine and valine contents were determined. Daily consumption of white tea ameliorated glucose tolerance and insulin sensitivity. Moreover, white tea altered the cortex glycolytic profile, modulating GLUT expression and lactate and alanine contents. Finally, white tea consumption restored protein oxidation and lipid peroxidation levels and catalase expression, and improved antioxidant capacity. In conclusion, daily consumption of white tea improved the cerebral cortex metabolic and oxidative profile in prediabetic rats, suggesting it as a good, safe and inexpensive strategy to prevent DM-related effects in the cerebral cortex.


Assuntos
Camellia sinensis/química , Córtex Cerebral/metabolismo , Neurônios/metabolismo , Folhas de Planta/química , Brotos de Planta/química , Estado Pré-Diabético/dietoterapia , Chá , Animais , Biomarcadores/metabolismo , Camellia sinensis/crescimento & desenvolvimento , Córtex Cerebral/enzimologia , Regulação da Expressão Gênica , Glutationa/metabolismo , Glicólise , Resistência à Insulina , Peroxidação de Lipídeos , Masculino , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/enzimologia , Oxirredução , Estresse Oxidativo , Oxirredutases/genética , Oxirredutases/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Estado Pré-Diabético/enzimologia , Estado Pré-Diabético/metabolismo , Carbonilação Proteica , Distribuição Aleatória , Ratos Wistar , Chá/efeitos adversos
14.
J Bioenerg Biomembr ; 47(1-2): 119-31, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25217852

RESUMO

The integrity of mitochondrial function is essential to cell life. It follows that disturbances of mitochondrial function will lead to disruption of cell function, expressed as disease or even death. Considering that neuronal uncoupling proteins (UCPs) decrease reactive oxygen species (ROS) production at the expense of energy production, it is important to understand the underlying mechanisms by which UCPs control the balance between the production of adenosine triphosphate (ATP) and ROS in the context of normal physiological activity and in pathological conditions. Here we review the current understanding of neuronal UCPs-mediated respiratory uncoupling process by performing a survey in their physiology and regulation. The latest findings regarding neuronal UCPs physiological roles and their involvement and interest as potential targets for therapeutic intervention in brain diseases will also be exploited.


Assuntos
Encefalopatias/metabolismo , Encéfalo/metabolismo , Canais Iônicos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Encéfalo/patologia , Encefalopatias/tratamento farmacológico , Encefalopatias/patologia , Metabolismo Energético , Humanos , Mitocôndrias/patologia , Neurônios/patologia , Espécies Reativas de Oxigênio/metabolismo , Proteína Desacopladora 1
15.
J Alzheimers Dis ; 43(4): 1375-92, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25182746

RESUMO

Brain mitochondria are fundamental to maintaining healthy functional brains, and their dysfunction is involved in age-related neurodegenerative disorders such as Alzheimer's disease (AD). In this study, we conducted a research on how both non-synaptic and synaptic mitochondrial functions are compromised at an early stage of AD-like pathologies and their correlation with putative changes on membranes lipid profile, using 3 month-old nontransgenic and 3xTg-AD mice, a murine model of experimental AD. Bioenergetic dysfunction in 3xTg-AD brains is evidenced by a decrease of brain ATP levels resulting, essentially, from synaptic mitochondria functionality disruption as indicated by declined respiratory control ratio associated with a 50% decreased complex I activity. Lipidomics studies revealed that synaptic bioenergetic deficit of 3xTg-AD brains is accompanied by alterations in the phospholipid composition of synaptic mitochondrial membranes, detected either in phospholipid class distribution or in the phospholipids molecular profile. Globally, diacyl- and lyso-phosphatidylcholine lipids increase while ethanolamine plasmalogens and cardiolipins content drops in relation to nontransgenic background. However, the main lipidomic mark of 3xTg-AD brains is that cardiolipin cluster-organized profile is lost in synaptic mitochondria due to a decline of the most representative molecular species. In contrast to synaptic mitochondria, results support the idea that non-synaptic mitochondria function is preserved at the age of 3 months. Although the genetically construed 3xTg-AD mouse model does not represent the most prevalent form of AD in humans, the present study provides insights into the earliest biochemical events in AD brain, connecting specific lipidomic changes with synaptic bioenergetic deficit that may contribute to the progressive synapses loss and the neurodegenerative process that characterizes AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Encéfalo/fisiopatologia , Cardiolipinas/metabolismo , Mitocôndrias/fisiologia , Sinapses/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/metabolismo , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Membranas Mitocondriais/metabolismo , Fosfolipídeos/metabolismo , Fosforilação
16.
Mol Neurobiol ; 51(2): 610-22, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24833600

RESUMO

In Alzheimer's disease, the accumulation of amyloid-beta (Aß) in the brain occurs in the parenchyma and cerebrovasculature. Several evidences support that the neuronal demise is potentiated by vascular alterations in the early stages of the disease, but the mechanisms responsible for the dysfunction of brain endothelial cells that underlie these cerebrovascular changes are unknown. Using rat brain microvascular endothelial cells, we found that short-term treatment with a toxic dose of Aß1-40 inhibits the Ca(2+) refill and retention ability of the endoplasmic reticulum and enhances the mitochondrial and cytosolic response to adenosine triphosphate (ATP)-stimulated endoplasmic reticulum Ca(2+) release. Upon prolonged Aß1-40 exposure, Ca(2+) homeostasis was restored concomitantly with a decrease in the levels of proteins involved in its regulation operating at the plasma membrane, endoplasmic reticulum, and mitochondria. Along with perturbations in Ca(2+) regulation, an early increase in the levels of oxidants and a decrease in the ratio between reduced and oxidized glutathione were observed in Aß1-40-treated endothelial cells. Under these conditions, the nuclear levels of oxidative stress-related transcription factors, namely, hypoxia-inducible factor 1α and nuclear factor (erythroid-derived 2)-related factor 2, were enhanced as well as the protein levels of target genes. In conclusion, Aß1-40 affects several mechanisms involved in Ca(2+) homeostasis and impairs the redox homeostasis simultaneously with stimulation of protective stress responses in brain endothelial cells. However, the imbalance between cell death and survival pathways leads to endothelial dysfunction that in turn contributes to cerebrovascular impairment in Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Encéfalo/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade , Animais , Encéfalo/fisiologia , Sinalização do Cálcio/fisiologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Endoteliais/fisiologia , Homeostase/fisiologia , Oxirredução/efeitos dos fármacos , Ratos
17.
J Alzheimers Dis ; 38(1): 75-83, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23948922

RESUMO

We hypothesized that hyperglycemia-induced mitochondrial dysfunction and oxidative stress are closely associated with amyloid-ß peptide (Aß) toxicity in endothelial cells. Brain microvascular endothelial cells from rat (RBMEC) and mice (MBMEC) were isolated from adult Sprague-Dawley rats and homozygous db/db (Leprdb/Leprdb) and heterozygous (Dock7m/Leprdb) mice, and cultured under normo- and hyperglycemic conditions for 7 d followed by 24 h exposure to Aß1-40. Some experiments were also performed with two mitochondrial superoxide (O2•-) scavengers, MitoTempo and Peg-SOD. Cell viability was measured by the Alamar blue assay and mitochondrial membrane potential (ΔΨm) by confocal microscopy. Mitochondrial O2•- and hydrogen peroxide (H2O2) production was assessed by fluorescence microscopy and H2O2 production was confirmed by microplate reader. Hyperglycemia or Aß1-40 alone did not affect cell viability in RBMEC. However, the simultaneous presence of high glucose and Aß1-40 reduced cell viability and ΔΨm, and enhanced mitochondrial O2•- and H2O2 production. MitoTempo and PEG-SOD prevented Aß1-40 toxicity. Interestingly, MBMEC presented a similar pattern of alterations with db/db cultures presenting higher susceptibility to Aß1-40. Overall, our results show that high glucose levels increase the susceptibility of brain microvascular endothelial cells to Aß toxicity supporting the idea that hyperglycemia is a major risk factor for vascular injury associated with AD.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Encéfalo/patologia , Células Endoteliais/efeitos dos fármacos , Hiperglicemia/patologia , Fragmentos de Peptídeos/toxicidade , Animais , Células Cultivadas , Suscetibilidade a Doenças/etiologia , Proteínas Ativadoras de GTPase , Glucose/farmacologia , Fatores de Troca do Nucleotídeo Guanina/genética , Peróxido de Hidrogênio/metabolismo , Hiperglicemia/induzido quimicamente , Hiperglicemia/genética , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/genética , Camundongos , Camundongos Mutantes , Peptídeos/metabolismo , Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptores para Leptina/genética , Fatores de Tempo
18.
Curr Neuropharmacol ; 12(6): 475-89, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25977676

RESUMO

Diabetes mellitus (DM) is a metabolic disease that is rapidly increasing and has become a major public health problem. Type 2 DM (T2DM) is the most common type, accounting for up to 90-95% of the new diagnosed DM cases. The brain is very susceptible to glucose fluctuations and hyperglycemia-induced oxidative stress (OS). It is well known that DM and the risk of developing neurodegenerative diseases are associated. Tea, Camellia sinensis L., is one of the most consumed beverages. It contains several phytochemicals, such as polyphenols, methylxanthines (mainly caffeine) and L-theanine that are often reported to be responsible for tea's health benefits, including in brain. Tea phytochemicals have been reported to be responsible for tea's significant antidiabetic and neuroprotective properties and antioxidant potential. Epidemiological studies have shown that regular consumption of tea has positive effects on DM-caused complications and protects the brain against oxidative damage, contributing to an improvement of the cognitive function. Among the several reported benefits of tea consumption, those related with neurodegenerative diseases are of great interest. Herein, we discuss the potential beneficial effects of tea consumption and tea phytochemicals on DM and how their action can counteract the severe brain damage induced by this disease.

19.
Biochim Biophys Acta ; 1837(3): 335-44, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24361842

RESUMO

Pre-diabetes, a risk factor for type 2 diabetes development, leads to metabolic changes at testicular level. Peroxisome proliferator-activated receptor γ coactivator 1 α (PGC-1α) and Sirtuin 3 (Sirt3) are pivotal in mitochondrial function. We hypothesized that pre-diabetes disrupts testicular PGC-1α/Sirt3 axis, compromising testicular mitochondrial function. Using a high-energy-diet induced pre-diabetic rat model, we evaluated testicular levels of PGC-1α and its downstream targets, nuclear respiratory factors 1 (NRF-1) and 2 (NRF-2), mitochondrial transcription factor A (TFAM) and Sirt3. We also assessed mitochondrial DNA (mtDNA) content, mitochondrial function, energy levels and oxidative stress parameters. Protein levels were quantified by Western Blot, mtDNA content was determined by qPCR. Mitochondrial complex activity and oxidative stress parameters were spectrophotometrically evaluated. Adenine nucleotide levels, adenosine and its metabolites (inosine and hypoxanthine) were determined by reverse-phase HPLC. Pre-diabetic rats showed increased blood glucose levels and impaired glucose tolerance. Both testicular PGC-1α and Sirt3 levels were decreased. NRF-1, NRF-2 and TFAM were not altered. Testicular mtDNA content was decreased. Mitochondrial complex I activity was increased, whereas mitochondrial complex III activity was decreased. Adenylate energy charge was decreased in pre-diabetic rats, as were ATP and ADP levels. Conversely, AMP levels were increased, evidencing a decreased ATP/AMP ratio. Concerning to oxidative stress pre-diabetes decreased testicular antioxidant capacity and increased lipid and protein oxidation. In sum, pre-diabetes compromises testicular mitochondrial function by repressing PGC-1α/Sirt3 axis and mtDNA copy number, declining respiratory capacity and increasing oxidative stress. This study gives new insights into overall testicular bioenergetics at this prodromal stage of disease.


Assuntos
Metabolismo Energético/fisiologia , Estresse Oxidativo/fisiologia , Estado Pré-Diabético/fisiopatologia , Sirtuína 3/metabolismo , Testículo/metabolismo , Fatores de Transcrição/metabolismo , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Glicemia/metabolismo , Western Blotting , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Fator de Transcrição de Proteínas de Ligação GA/metabolismo , Insulina/sangue , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fator 1 Nuclear Respiratório/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Reação em Cadeia da Polimerase , Estado Pré-Diabético/sangue , Ratos , Ratos Wistar
20.
Cell Tissue Res ; 354(3): 861-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24057877

RESUMO

Sertoli cells (SCs) glucose metabolism is crucial for spermatogenesis since developing germ cells consume lactate produced by SCs as their main energy source. Recently, androgens and estrogens have been implicated in SCs energy metabolism modulation, although the molecular mechanisms remained undisclosed. Here, we report the effect of sex steroid hormones on key points of cultured rat SCs glycolytic pathway. We used primary cultures of immature rat SCs treated with 17ß-estradiol (E2) or 5α-dihydrotestosterone (DHT). The transcript levels of glucose transporters (GLUTs), phosphofructokinase 1 (PFK-1) and lactate dehydrogenase C (LDH C) were analyzed after 25 and 50 h of culture by qPCR. Protein levels of GLUTs, PFK-1, LDH and monocarboxylate transporter 4 (MCT4) after 25 and 50 h were determined by western blot and LDH activity was also assessed. Our results show that both E2 and DHT downregulated the transcript levels of PFK-1, GLUT1 and GLUT3 after 50 h. However, only DHT-treated cells presented a downregulation of LDH C transcript levels. Interestingly, the protein levels of these enzymes and transporters remained unaltered except in DHT-treated cells that presented a significant decrease on GLUT1 protein levels evidencing a possible site for the regulation of SCs glucose metabolism by androgens. Taken together, our results provide evidence that sex steroid hormones action in SCs energy metabolism is mediated through modulation in glycolysis-related transporters and enzymes, particularly at the transcriptional level. DHT decreased GLUT1 protein levels and increased LDH activity after 25 h, evidencing key points for this hormone action in the regulation of SCs metabolism.


Assuntos
Di-Hidrotestosterona/farmacologia , Estradiol/farmacologia , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , L-Lactato Desidrogenase/metabolismo , Fosfofrutoquinase-1/metabolismo , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/metabolismo , Animais , Metabolismo Energético , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/biossíntese , Proteínas Facilitadoras de Transporte de Glucose/genética , Glicólise/efeitos dos fármacos , Isoenzimas/biossíntese , Isoenzimas/genética , Isoenzimas/metabolismo , L-Lactato Desidrogenase/biossíntese , L-Lactato Desidrogenase/genética , Masculino , Transportadores de Ácidos Monocarboxílicos/biossíntese , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/biossíntese , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Fosfofrutoquinase-1/biossíntese , Fosfofrutoquinase-1/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Wistar , Células de Sertoli/enzimologia , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA