Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Microbiol ; 204(1): 9, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873663

RESUMO

The present study evaluated the influence of the marine bacteria Bacillus cereus Mc-1 on the corrosion of 1020 carbon steel, 316L stainless steel, and copper alloy. The Mc-1 strain was grown in a modified ammoniacal citrate culture medium (CFA.ico-), CFA.ico- with sodium nitrate supplementation (NO3-), and CFA.ico- with sodium chloride supplementation (NaCl). The mass loss and corrosion rate were evaluated after the periods of 7, 15, and 30 days. The results showed that in CFA.ico- and CFA.ico- medium added NO3- the corrosion rates of carbon steel and copper alloy were high when compared to the control. Whereas the medium was supplemented with NaCl, despite the rates being above the averages of the control system, they were considerably below the previous results. In general, the corrosion rates induced by Mc-1 on 316L coupons were below the results compared to carbon steel and copper alloy. When analyzing the corrosion rate measurements, regardless of the culture medium, the corrosion levels decreased consistently after 15 days, being below the levels evaluated after 7 days of the experiment. Our analyses suggest that B. cereus Mc-1 has different influences on corrosion in different metals and environmental conditions, such as the presence of NO3- and NaCl. These results can help to better understand the influence of this bacteria genus on the corrosion of metals in marine environments.


Assuntos
Aço Inoxidável , Aço , Bacillus cereus , Carbono , Cobre , Corrosão
2.
Biotechnol Lett ; 42(8): 1431-1448, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32472186

RESUMO

In order to evaluate the corrosive action of microorganisms on 316L metal exposed directly to a marine environment, a system was designed to immerse coupons in seawater. After periods of 30, 60 and 90 days, the coupons were recovered, the corrosion rates evaluated and the biofilm samples on their surface were analyzed by 16S rRNA gene sequencing. The results of the corrosion rate showed an acceleration over the entire experimental period. Alpha diversity measurements showed higher rates after 60 days of the experiment, while abundance measurements showed higher rates after 90 days of exposure to the marine environment. The beta-diversity results showed a clear separation between the three conditions and proximity in the indices between replicates of the same experimental condition. The results of 16S rRNA gene sequencing showed that after 30 days of exposure to seawater, there was massive representativeness of the pioneer bacteria, Gamma and Alphaproteobacteria, with emphasis on the genera Alcanivorax, Oceanospirillum and Shewanella. At the 60-day analysis, the Gammaproteobacteria class remained dominant, followed by Alphaproteobacteria and Flavobacteria, and the main representatives were Flexibacter and Pseudoalteromonas. In the last analysis, after 90 days, a change in the described bacterial community profile was observed. The Gammaproteobacteria class was still the largest in diversity and OTUs. The most predominant genera in number of OTUs were Alteromonas, Bacteriovorax and, Nautella. Our results describe a change in the microbial community over coupons directly exposed to the marine environment, suggesting a redirection to the formation of a mature biofilm. The conditions created by the biofilm structure suggest said condition favor biocorrosion on the analyzed coupons.


Assuntos
Bactérias/genética , Corrosão , Microbiota/genética , Análise de Sequência de DNA/métodos , Aço Inoxidável/análise , Organismos Aquáticos/genética , DNA Bacteriano/análise , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Água do Mar/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA