Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (207)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38767378

RESUMO

Ultrashort self-assembling peptides (SAPs) can spontaneously form nanofibers that resemble the extracellular matrix. These fibers allow the formation of hydrogels that are biocompatible, biodegradable, and non-immunogenic. We have previously proven that SAPs, when biofunctionalized with protein-derived motifs, can mimic the extracellular matrix characteristics that support colorectal organoid formation. These biofunctional peptide hydrogels retain the original parent peptide's mechanical properties, tunability, and printability while incorporating cues that allow cell-matrix interactions to increase cell adhesion. This paper presents the protocols needed to evaluate and characterize the effects of various biofunctional peptide hydrogels on cell adhesion and lumen formation using an adenocarcinoma cancer cell line able to form colorectal cancer organoids cost-effectively. These protocols will help evaluate biofunctional peptide hydrogel effects on cell adhesion and luminal formation using immunostaining and fluorescence image analysis. The cell line used in this study has been previously utilized for generating organoids in animal-derived matrices.


Assuntos
Neoplasias Colorretais , Hidrogéis , Organoides , Peptídeos , Organoides/citologia , Humanos , Neoplasias Colorretais/patologia , Linhagem Celular Tumoral , Hidrogéis/química , Peptídeos/química , Nanofibras/química , Adenocarcinoma/patologia , Matriz Extracelular/química , Adesão Celular/fisiologia
2.
Langmuir ; 39(49): 17903-17920, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38039288

RESUMO

Coral reef survival is threatened globally. One way to restore this delicate ecosystem is to enhance coral growth by the controlled propagation of coral fragments. To be sustainable, this technique requires the use of biocompatible underwater adhesives. Hydrogels based on rationally designed ultrashort self-assembling peptides (USP) are of great interest for various biological and environmental applications, due to their biocompatibility and tunable mechanical properties. Implementing superior adhesion properties to the USP hydrogel compounds is crucial in both water and high ionic strength solutions and is relevant in medical and marine environmental applications such as coral regeneration. Some marine animals secrete large quantities of the aminoacids dopa and lysine to enhance their adhesion to wet surfaces. Therefore, the addition of catechol moieties to the USP sequence containing lysine (IIZK) should improve the adhesive properties of USP hydrogels. However, it is challenging to place the catechol moiety (Do) within the USP sequence at an optimal position without compromising the hydrogel self-assembly process and mechanical properties. Here, we demonstrate that, among three USP hydrogels, DoIIZK is the least adhesive and that the adhesiveness of the IIZDoK hydrogel is compromised by its poor mechanical properties. The best adhesion outcome was achieved using the IIZKDo hydrogel, the only one to show equally sound adhesive and mechanical properties. A mechanistic understanding of this outcome is presented here. This property was confirmed by the successful gluing of coral fragments by means of IIZKDo hydrogel that are still thriving after more than three years since the deployment. The validated biocompatibility of this underwater hydrogel glue suggests that it could be advantageously implemented for other applications, such as surgical interventions.


Assuntos
Antozoários , Recuperação e Remediação Ambiental , Hidrogéis , Animais , Adesivos/química , Di-Hidroxifenilalanina/química , Ecossistema , Hidrogéis/química , Lisina , Peptídeos
3.
ACS Nano ; 17(15): 14508-14531, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37477873

RESUMO

Cells' interactions with their microenvironment influence their morphological features and regulate crucial cellular functions including proliferation, differentiation, metabolism, and gene expression. Most biological data available are based on in vitro two-dimensional (2D) cellular models, which fail to recapitulate the three-dimensional (3D) in vivo systems. This can be attributed to the lack of cell-matrix interaction and the limitless access to nutrients and oxygen, in contrast to in vivo systems. Despite the emergence of a plethora of 3D matrices to address this challenge, there are few reports offering a proper characterization of these matrices or studying how the cell-matrix interaction influences cellular metabolism in correlation with gene expression. In this study, two tetrameric ultrashort self-assembling peptide sequences, FFIK and FIIK, were used to create in vitro 3D models using well-described human dermal fibroblast cells. The peptide sequences are derived from naturally occurring amino acids that are capable of self-assembling into stable hydrogels without UV or chemical cross-linking. Our results showed that 2D cultured fibroblasts exhibited distinct metabolic and transcriptomic profiles compared to 3D cultured cells. The observed changes in the metabolomic and transcriptomic profiles were closely interconnected and influenced several important metabolic pathways including the TCA cycle, glycolysis, MAPK signaling cascades, and hemostasis. Data provided here may lead to clearer insights into the influence of the surrounding microenvironment on human dermal fibroblast metabolic patterns and molecular mechanisms, underscoring the importance of utilizing efficient 3D in vitro models to study such complex mechanisms.


Assuntos
Sinais (Psicologia) , Transcriptoma , Humanos , Peptídeos/química , Células Cultivadas , Fibroblastos/metabolismo , Hidrogéis/química
4.
Int J Bioprint ; 9(1): 633, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36866082

RESUMO

160Three-dimensional (3D) bioprinting systems, which are the prominent tools for biofabrication, should evolve around the cutting-edge technologies of tissue engineering. This is the case with organoid technology, which requires a plethora of new materials to evolve, including extracellular matrices with specific mechanical and biochemical properties. For a bioprinting system to facilitate organoid growth, it must be able to recreate an organ-like environment within the 3D construct. In this study, a well-established, self-assembling peptide system was employed to generate a laminin-like bioink to provide signals of cell adhesion and lumen formation in cancer stem cells. One bioink formulation led to the formation of lumen with outperforming characteristics, which showed good stability of the printed construct.

5.
Biofabrication ; 14(4)2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35793642

RESUMO

Parkinson's disease (PD) is a progressive neurological disorder that affects movement. It is associated with lost dopaminergic (DA) neurons in thesubstantia nigra, a process that is not yet fully understood. To understand this deleterious disorder, there is an immense need to develop efficientin vitrothree-dimensional (3D) models that can recapitulate complex organs such as the brain. However, due to the complexity of neurons, selecting suitable biomaterials to accommodate them is challenging. Here, we report on the fabrication of functional DA neuronal 3D models using ultrashort self-assembling tetrapeptide scaffolds. Our peptide-based models demonstrate biocompatibility both for primary mouse embryonic DA neurons and for human DA neurons derived from human embryonic stem cells. DA neurons encapsulated in these scaffolds responded to 6-hydroxydopamine, a neurotoxin that selectively induces loss of DA neurons. Using multi-electrode arrays, we recorded spontaneous activity in DA neurons encapsulated within these 3D peptide scaffolds for more than 1 month without decrease of signal intensity. Additionally, vascularization of our 3D models in a co-culture with endothelial cells greatly promoted neurite outgrowth, leading to denser network formation. This increase of neuronal networks through vascularization was observed for both primary mouse DA and cortical neurons. Furthermore, we present a 3D bioprinted model of DA neurons inspired by the mouse brain and created with an extrusion-based 3D robotic bioprinting system that was developed during previous studies and is optimized with time-dependent pulsing by microfluidic pumps. We employed a hybrid fabrication strategy that relies on an external mold of the mouse brain construct that complements the shape and size of the desired bioprinted model to offer better support during printing. We hope that our 3D model provides a platform for studies of the pathogenesis of PD and other neurodegenerative disorders that may lead to better understanding and more efficient treatment strategies.


Assuntos
Neurônios Dopaminérgicos , Doença de Parkinson , Animais , Biomimética , Neurônios Dopaminérgicos/patologia , Neurônios Dopaminérgicos/fisiologia , Células Endoteliais/patologia , Humanos , Camundongos , Doença de Parkinson/patologia , Doença de Parkinson/terapia , Peptídeos
6.
ACS Nano ; 15(4): 7500-7512, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33749234

RESUMO

The activation of the T cell mediated immune response relies on the fine interaction between the T cell receptor on the immune cell and the antigen-presenting major histocompatibility complex (MHC) molecules on the membrane surface of antigen-presenting cells. Both the distribution and quantity of MHC/peptide complexes and their adequate morphological presentation affect the activation of the immune cells. In several types of cancer the immune response is down-regulated due to the low expression of MHC-class I (MHC-I) molecules on the cell's surface, and in addition, the mechanical properties of the membrane seem to play a role. Herein, we investigate the distribution of MHC-I molecules and the related nanoscale mechanical environment on the cell surface of two cell lines derived from colon adenocarcinoma and a healthy epithelial colon reference cell line. Atomic force microscopy (AFM) force spectroscopy analysis using an antibody-tagged pyramidal probe specific for MHC-I molecules and a formula that relates the elasticity of the cell to the energy of adhesion revealed the different population distributions of MHC-I molecules in healthy cells compared to cancer cells. We found that MHC-I molecules are significantly less expressed in cancer cells. Moreover, the local elastic modulus is significantly reduced in cancer cells. We speculate that these results might be related to the proven ability of cancer cells to evade the immune system, not only by reducing MHC-I cell surface expression but also by modifying the local mechanical properties affecting the overall morphology of MHC-I synapse presentation to immune cells.


Assuntos
Antígenos de Histocompatibilidade Classe I , Neoplasias , Células Apresentadoras de Antígenos , Análise por Conglomerados , Colo , Antígenos de Histocompatibilidade Classe II , Complexo Principal de Histocompatibilidade
7.
Nano Lett ; 21(7): 2719-2729, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33492960

RESUMO

We report about rationally designed ultrashort peptide bioinks, overcoming severe limitations in current bioprinting procedures. Bioprinting is increasingly relevant in tissue engineering, regenerative and personalized medicine due to its ability to fabricate complex tissue scaffolds through an automated deposition process. Printing stable large-scale constructs with high shape fidelity and enabling long-term cell survival are major challenges that most existing bioinks are unable to solve. Additionally, they require chemical or UV-cross-linking for the structure-solidifying process which compromises the encapsulated cells, resulting in restricted structure complexity and low cell viability. Using ultrashort peptide bioinks as ideal bodylike but synthetic material, we demonstrate an instant solidifying cell-embedding printing process via a sophisticated extrusion procedure under true physiological conditions and at cost-effective low bioink concentrations. Our printed large-scale cell constructs and the chondrogenic differentiation of printed mesenchymal stem cells point to the strong potential of the peptide bioinks for automated complex tissue fabrication.


Assuntos
Bioimpressão , Impressão Tridimensional , Peptídeos , Engenharia Tecidual , Alicerces Teciduais
8.
Microsc Res Tech ; 76(7): 723-32, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23681761

RESUMO

Atomic force microscopy (AFM) proved to be able to obtain high-resolution three-dimensional images of single-membrane proteins, isolated, crystallized, or included in reconstructed model membranes. The extension of this technique to native systems, such as the protein immersed in a cell membrane, needs a careful manipulation of the biological sample to meet the experimental constraints for high-resolution AFM imaging. In this article, a general protocol for sample preparation is presented, based on the mechanical stretch of the cell membrane. The effectiveness for AFM imaging has been tested on the basis of an integrated optical and AFM approach and the proposed method has been applied to cells expressing cystic fibrosis transmembrane conductance regulator, a channel involved in cystic fibrosis, showing the possibility to identify and analyze single proteins in the plasma membrane.


Assuntos
Membrana Celular/química , Regulador de Condutância Transmembrana em Fibrose Cística/análise , Proteínas de Membrana/análise , Microscopia de Força Atômica/métodos , Animais , Linhagem Celular , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Ratos
9.
Plasmonics ; 8(1): 25-33, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23504187

RESUMO

Tip-enhanced Raman spectroscopy provides chemical information while raster scanning samples with topographical detail. The coupling of atomic force microscopy and Raman spectroscopy in top illumination optical setup is a powerful configuration to resolve nanometer structures while collecting reflection mode backscattered signal. Here, we theoretically calculate the field enhancement generated by TER spectroscopy with top illumination geometry and we apply the technique to the characterization of insulin amyloid fibrils. We experimentally confirm that this technique is able to enhance the Raman signal of the polypeptide chain by a factor of 105, thus revealing details down to few molecules resolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA