Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 11(11)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34510200

RESUMO

Polyploidy is considered a driving force in plant evolution and domestication. Although in the genus Arachis, several diploid species were traditionally cultivated for their seeds, only the allotetraploid peanut Arachis hypogaea became the successful, widely spread legume crop. This suggests that polyploidy has given selective advantage for domestication of peanut. Here, we study induced allotetraploid (neopolyploid) lineages obtained from crosses between the peanut's progenitor species, Arachis ipaënsis and Arachis duranensis, at earlier and later generations. We observed plant morphology, seed dimensions, and genome structure using cytogenetics (FISH and GISH) and SNP genotyping. The neopolyploid lineages show more variable fertility and seed morphology than their progenitors and cultivated peanut. They also showed sexual and somatic genome instability, evidenced by changes of number of detectable 45S rDNA sites, and extensive homoeologous recombination indicated by mosaic patterns of chromosomes and changes in dosage of SNP alleles derived from the diploid species. Genome instability was not randomly distributed across the genome: the more syntenic chromosomes, the higher homoeologous recombination. Instability levels are higher than observed on peanut lines, therefore it is likely that more unstable lines tend to perish. We conclude that early stages of the origin and domestication of the allotetraploid peanut involved two genetic bottlenecks: the first, common to most allotetraploids, is composed of the rare hybridization and polyploidization events, followed by sexual reproductive isolation from its wild diploid relatives. Here, we suggest a second bottleneck: the survival of the only very few lineages that had stronger mechanisms for limiting genomic instability.


Assuntos
Arachis , Fabaceae , Arachis/genética , Fabaceae/genética , Genoma de Planta , Humanos , Poliploidia , Sintenia
2.
Nat Genet ; 51(5): 877-884, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31043755

RESUMO

Like many other crops, the cultivated peanut (Arachis hypogaea L.) is of hybrid origin and has a polyploid genome that contains essentially complete sets of chromosomes from two ancestral species. Here we report the genome sequence of peanut and show that after its polyploid origin, the genome has evolved through mobile-element activity, deletions and by the flow of genetic information between corresponding ancestral chromosomes (that is, homeologous recombination). Uniformity of patterns of homeologous recombination at the ends of chromosomes favors a single origin for cultivated peanut and its wild counterpart A. monticola. However, through much of the genome, homeologous recombination has created diversity. Using new polyploid hybrids made from the ancestral species, we show how this can generate phenotypic changes such as spontaneous changes in the color of the flowers. We suggest that diversity generated by these genetic mechanisms helped to favor the domestication of the polyploid A. hypogaea over other diploid Arachis species cultivated by humans.


Assuntos
Arachis/genética , Arachis/classificação , Argentina , Cromossomos de Plantas/genética , Produtos Agrícolas/genética , Metilação de DNA , DNA de Plantas/genética , Domesticação , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Variação Genética , Genoma de Planta , Hibridização Genética , Fenótipo , Poliploidia , Recombinação Genética , Especificidade da Espécie , Tetraploidia
3.
Am J Bot ; 105(6): 1053-1066, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29985538

RESUMO

PREMISE OF THE STUDY: The genetic bottleneck of polyploid formation can be mitigated by multiple origins, gene flow, and recombination among different lineages. In crop plants with limited origins, efforts to increase genetic diversity have limitations. Here we used lineage recombination to increase genetic diversity in peanut, an allotetraploid likely of single origin, by crossing with a novel allopolyploid genotype and selecting improved lines. METHODS: Single backcross progeny from cultivated peanut × wild species-derived allotetraploid cross were studied over successive generations. Using genetic assumptions that encompass segmental allotetraploidy, we used single nucleotide polymorphisms and whole-genome sequence data to infer genome structures. KEY RESULTS: Selected lines, despite a high proportion of wild alleles, are agronomically adapted, productive, and with improved disease resistances. Wild alleles mostly substituted homologous segments of the peanut genome. Regions of dispersed wild alleles, characteristic of gene conversion, also occurred. However, wild chromosome segments sometimes replaced cultivated peanut's homeologous subgenome; A. ipaënsis B sometimes replaced A. hypogaea A subgenome (~0.6%), and A. duranensis replaced A. hypogaea B subgenome segments (~2%). Furthermore, some subgenome regions historically lost in cultivated peanut were "recovered" by wild chromosome segments (effectively reversing the "polyploid ratchet"). These processes resulted in lines with new genome structure variations. CONCLUSIONS: Genetic diversity was introduced by wild allele introgression, and by introducing new genome structure variations. These results highlight the special possibilities of segmental allotetraploidy and of using lineage recombination to increase genetic diversity in peanut, likely mirroring what occurs in natural segmental allopolyploids with multiple origins.


Assuntos
Arachis/genética , Hibridização Genética , Poliploidia , Alelos , Variação Genética , Recombinação Homóloga
4.
Am J Bot ; 104(3): 379-388, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28341626

RESUMO

PREMISE OF THE STUDY: Several species of Arachis have been cultivated for their edible seeds, historically and to the present day. The diploid species that have a history of cultivation show relatively small signatures of domestication. In contrast, the tetraploid species A. hypogaea evolved into highly domesticated forms and became a major world crop, the cultivated peanut. It seems likely that allotetraploidization (hybridity and/or tetraploidization) in some way enhanced attractiveness for cultivation. Here we investigate this using six different hybridization and tetraploidization events, from distinct Arachis diploid species, including one event derived from the same wild species that originated peanut. METHODS: Twenty-six anatomical, morphological, and physiological traits were examined in the induced allotetraploid plants and compared with their wild diploid parents. KEY RESULTS: Nineteen traits were transgressive (showed strong response to hybridization and chromosome duplication): allotetraploids had larger leaves, stomata and epidermal cells than did their diploid parents. In addition, allotetraploids produced more photosynthetic pigments. These traits have the same trend across the different hybrid combinations, suggesting that the changes are more likely due to ploidy rather than hybridity. In contrast, seed dimensions and seed mass did not significantly change in response to hybridization or tetraploidization. CONCLUSIONS: We suggest that the original allotetraploid that gave rise to cultivated peanut may have been attractive because of an increase in plant size, different transpiration characteristics, higher photosynthetic capacity, or other characteristics, but contrary to accepted knowledge, increased seed size was unlikely to have been important in the initial domestication.


Assuntos
Arachis/genética , Domesticação , Genoma de Planta/genética , Fotossíntese , Arachis/anatomia & histologia , Arachis/crescimento & desenvolvimento , Arachis/fisiologia , Produtos Agrícolas , Diploide , Genótipo , Hibridização Genética , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Poliploidia , Sementes/anatomia & histologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Tetraploidia
5.
G3 (Bethesda) ; 6(2): 377-90, 2015 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-26656152

RESUMO

Root-knot nematodes (RKN; Meloidogyne sp.) are a major threat to crops in tropical and subtropical regions worldwide. The use of resistant crop varieties is the preferred method of control because nematicides are expensive, and hazardous to humans and the environment. Peanut (Arachis hypogaea) is infected by four species of RKN, the most damaging being M. arenaria, and commercial cultivars rely on a single source of resistance. In this study, we genetically characterize RKN resistance of the wild Arachis species A. stenosperma using a population of 93 recombinant inbred lines developed from a cross between A. duranensis and A. stenosperma. Four quantitative trait loci (QTL) located on linkage groups 02, 04, and 09 strongly influenced nematode root galling and egg production. Drought-related, domestication and agronomically relevant traits were also evaluated, revealing several QTL. Using the newly available Arachis genome sequence, easy-to-use KASP (kompetitive allele specific PCR) markers linked to the newly identified RKN resistance loci were developed and validated in a tetraploid context. Therefore, we consider that A. stenosperma has high potential as a new source of RKN resistance in peanut breeding programs.


Assuntos
Arachis/genética , Arachis/parasitologia , Mapeamento Cromossômico , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Tylenchoidea , Animais , Secas , Marcadores Genéticos , Genética Populacional , Genoma de Planta , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Poliploidia , Locos de Características Quantitativas , Característica Quantitativa Herdável , Reprodutibilidade dos Testes , Estresse Fisiológico
6.
Ann Bot ; 115(2): 237-49, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25538110

RESUMO

BACKGROUND AND AIMS: Arachis batizocoi is a wild relative of cultivated peanut (A. hypogaea), an allotetraploid with an AABB genome. Arachis batizocoi was once considered the ancestral donor of the peanut B genome, but cytogenetics and DNA phylogenies have indicated a new genome classification, 'K'. These observations seem inconsistent with genetic studies and breeding that have shown that A. batizocoi can behave as a B genome. METHODS: The genetic behaviour, genome composition and phylogenetic position of A. batizocoi were studied using controlled hybridizations, induced tetraploidy, whole-genome in situ fluorescent hybridization (GISH) and molecular phylogenetics. KEY RESULTS: Sterile diploid hybrids containing AK genomes were obtained using A. batizocoi and the A genome species A. duranensis, A. stenosperma, A. correntina or A. villosa. From these, three types of AAKK allotetraploids were obtained, each in multiple independent polyploidy events. Induced allotetraploids were vigorous and fertile, and were hybridized to A. hypogaea to produce F1 hybrids. Even with the same parental combination, fertility of these F1 hybrids varied greatly, suggesting the influence of stochastic genetic or epigenetic events. Interestingly, hybrids with A. hypogaea ssp. hypogaea were significantly more fertile than those with the subspecies fastigiata. GISH in cultivated × induced allotetraploids hybrids (harbouring AABK genomes) and a molecular phylogeny using 16 intron sequences showed that the K genome is distinct, but more closely related to the B than to the A genome. CONCLUSIONS: The K genome of A. batizocoi is more related to B than to the A genome, but is distinct. As such, when incorporated in an induced allotetraploid (AAKK) it can behave as a B genome in crosses with peanut. However, the fertility of hybrids and their progeny depends upon the compatibility of the A genome interactions. The genetic distinctness of A. batizocoi makes it an important source of allelic diversity in itself, especially in crosses involving A. hypogaea ssp. hypogaea.


Assuntos
Arachis/genética , Fabaceae/genética , Genoma de Planta , Hibridização Genética , Filogenia , Poliploidia , Variação Genética , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Análise de Sequência de DNA
7.
G3 (Bethesda) ; 4(1): 89-96, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24212082

RESUMO

Single nucleotide polymorphic markers (SNPs) are attractive for use in genetic mapping and marker-assisted breeding because they can be scored in parallel assays at favorable costs. However, scoring SNP markers in polyploid plants like the peanut is problematic because of interfering signal generated from the DNA bases that are homeologous to those being assayed. The present study used a previously constructed 1536 GoldenGate SNP assay developed using SNPs identified between two A. duranensis accessions. In this study, the performance of this assay was tested on two RIL mapping populations, one diploid (A. duranensis × A. stenosperma) and one tetraploid [A. hypogaea cv. Runner IAC 886 × synthetic tetraploid (A. ipaënsis × A. duranensis)(4×)]. The scoring was performed using the software GenomeStudio version 2011.1. For the diploid, polymorphic markers provided excellent genotyping scores with default software parameters. In the tetraploid, as expected, most of the polymorphic markers provided signal intensity plots that were distorted compared to diploid patterns and that were incorrectly scored using default parameters. However, these scorings were easily corrected using the GenomeStudio software. The degree of distortion was highly variable. Of the polymorphic markers, approximately 10% showed no distortion at all behaving as expected for single-dose markers, and another 30% showed low distortion and could be considered high-quality. The genotyped markers were incorporated into diploid and tetraploid genetic maps of Arachis and, in the latter case, were located almost entirely on A genome linkage groups.


Assuntos
Arachis/genética , Mapeamento Cromossômico , Genoma de Planta , Polimorfismo de Nucleotídeo Único , Arachis/metabolismo , Diploide , Genótipo , Técnicas de Genotipagem , Software , Tetraploidia
8.
Ann Bot ; 111(1): 113-26, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23131301

RESUMO

BACKGROUND AND AIMS: The genus Arachis contains 80 described species. Section Arachis is of particular interest because it includes cultivated peanut, an allotetraploid, and closely related wild species, most of which are diploids. This study aimed to analyse the genetic relationships of multiple accessions of section Arachis species using two complementary methods. Microsatellites allowed the analysis of inter- and intraspecific variability. Intron sequences from single-copy genes allowed phylogenetic analysis including the separation of the allotetraploid genome components. METHODS: Intron sequences and microsatellite markers were used to reconstruct phylogenetic relationships in section Arachis through maximum parsimony and genetic distance analyses. KEY RESULTS: Although high intraspecific variability was evident, there was good support for most species. However, some problems were revealed, notably a probable polyphyletic origin for A. kuhlmannii. The validity of the genome groups was well supported. The F, K and D genomes grouped close to the A genome group. The 2n = 18 species grouped closer to the B genome group. The phylogenetic tree based on the intron data strongly indicated that A. duranensis and A. ipaënsis are the ancestors of A. hypogaea and A. monticola. Intron nucleotide substitutions allowed the ages of divergences of the main genome groups to be estimated at a relatively recent 2·3-2·9 million years ago. This age and the number of species described indicate a much higher speciation rate for section Arachis than for legumes in general. CONCLUSIONS: The analyses revealed relationships between the species and genome groups and showed a generally high level of intraspecific genetic diversity. The improved knowledge of species relationships should facilitate the utilization of wild species for peanut improvement. The estimates of speciation rates in section Arachis are high, but not unprecedented. We suggest these high rates may be linked to the peculiar reproductive biology of Arachis.


Assuntos
Agricultura , Arachis/crescimento & desenvolvimento , Arachis/genética , Íntrons/genética , Repetições de Microssatélites/genética , Alelos , Arachis/classificação , Sequência de Bases , DNA de Plantas/genética , Marcadores Genéticos , Heterozigoto , Filogenia , Polimorfismo Genético
9.
BMC Plant Biol ; 12: 26, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22340522

RESUMO

BACKGROUND: Polyploidy can result in genetic bottlenecks, especially for species of monophyletic origin. Cultivated peanut is an allotetraploid harbouring limited genetic diversity, likely resulting from the combined effects of its single origin and domestication. Peanut wild relatives represent an important source of novel alleles that could be used to broaden the genetic basis of the cultigen. Using an advanced backcross population developed with a synthetic amphidiploid as donor of wild alleles, under two water regimes, we conducted a detailed QTL study for several traits involved in peanut productivity and adaptation as well as domestication. RESULTS: A total of 95 QTLs were mapped in the two water treatments. About half of the QTL positive effects were associated with alleles of the wild parent and several QTLs involved in yield components were specific to the water-limited treatment. QTLs detected for the same trait mapped to non-homeologous genomic regions, suggesting differential control in subgenomes as a consequence of polyploidization. The noteworthy clustering of QTLs for traits involved in seed and pod size and in plant and pod morphology suggests, as in many crops, that a small number of loci have contributed to peanut domestication. CONCLUSION: In our study, we have identified QTLs that differentiated cultivated peanut from its wild relatives as well as wild alleles that contributed positive variation to several traits involved in peanut productivity and adaptation. These findings offer novel opportunities for peanut improvement using wild relatives.


Assuntos
Arachis/genética , Mapeamento Cromossômico/métodos , Locos de Características Quantitativas/genética , Alelos , Cruzamentos Genéticos , Poliploidia
10.
BMC Plant Biol ; 9: 40, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19351409

RESUMO

BACKGROUND: Arachis hypogaea (peanut) is an important crop worldwide, being mostly used for edible oil production, direct consumption and animal feed. Cultivated peanut is an allotetraploid species with two different genome components, A and B. Genetic linkage maps can greatly assist molecular breeding and genomic studies. However, the development of linkage maps for A. hypogaea is difficult because it has very low levels of polymorphism. This can be overcome by the utilization of wild species of Arachis, which present the A- and B-genomes in the diploid state, and show high levels of genetic variability. RESULTS: In this work, we constructed a B-genome linkage map, which will complement the previously published map for the A-genome of Arachis, and produced an entire framework for the tetraploid genome. This map is based on an F2 population of 93 individuals obtained from the cross between the diploid A. ipaënsis (K30076) and the closely related A. magna (K30097), the former species being the most probable B genome donor to cultivated peanut. In spite of being classified as different species, the parents showed high crossability and relatively low polymorphism (22.3%), compared to other interspecific crosses. The map has 10 linkage groups, with 149 loci spanning a total map distance of 1,294 cM. The microsatellite markers utilized, developed for other Arachis species, showed high transferability (81.7%). Segregation distortion was 21.5%. This B-genome map was compared to the A-genome map using 51 common markers, revealing a high degree of synteny between both genomes. CONCLUSION: The development of genetic maps for Arachis diploid wild species with A- and B-genomes effectively provides a genetic map for the tetraploid cultivated peanut in two separate diploid components and is a significant advance towards the construction of a transferable reference map for Arachis. Additionally, we were able to identify affinities of some Arachis linkage groups with Medicago truncatula, which will allow the transfer of information from the nearly-complete genome sequences of this model legume to the peanut crop.


Assuntos
Arachis/genética , Mapeamento Cromossômico , Ligação Genética , Genoma de Planta , Sintenia , DNA de Plantas/genética , Etiquetas de Sequências Expressas , Biblioteca Genômica , Hibridização Genética , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Poliploidia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA