Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biomolecules ; 14(5)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38785938

RESUMO

The adsorption kinetics of human serum albumin (HSA) on bare and poly-L-arginine (PARG)-modified silica substrates were investigated using reflectometry and atomic force microscopy (AFM). Measurements were carried out at various pHs, flow rates and albumin concentrations in the 10 and 150 mM NaCl solutions. The mass transfer rate constants and the maximum protein coverages were determined for the bare silica at pH 4.0 and theoretically interpreted in terms of the hybrid random sequential adsorption model. These results were used as reference data for the analysis of adsorption kinetics at larger pHs. It was shown that the adsorption on bare silica rapidly decreased with pH and became negligible at pH 7.4. The albumin adsorption on PARG-functionalized silica showed an opposite trend, i.e., it was negligible at pH 4 and attained maximum values at pH 7.4 and 150 mM NaCl, the conditions corresponding to the blood serum environment. These results were interpreted as the evidence of a significant role of electrostatic interactions in the albumin adsorption on the bare and PARG-modified silica. It was also argued that our results can serve as useful reference data enabling a proper interpretation of protein adsorption on substrates functionalized by polyelectrolytes.


Assuntos
Polieletrólitos , Albumina Sérica , Dióxido de Silício , Dióxido de Silício/química , Adsorção , Humanos , Cinética , Concentração de Íons de Hidrogênio , Albumina Sérica/química , Polieletrólitos/química , Poliaminas/química , Peptídeos/química , Microscopia de Força Atômica , Albumina Sérica Humana/química
2.
Phys Chem Chem Phys ; 25(27): 18182-18196, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37387688

RESUMO

We show by extensive experimental characterization combined with molecular simulations that pH has a major impact on the assembly mechanism and properties of poly(L-lysine) (PLL) and poly(L-glutamic acid) (PGA) complexes. A combination of dynamic light scattering (DLS) and laser Doppler velocimetry (LDV) is used to assess the complexation, charge state, and other physical characteristics of the complexes, isothermal titration calorimetry (ITC) is used to examine the complexation thermodynamics, and circular dichroism (CD) is used to extract the polypeptides' secondary structure. For enhanced analysis and interpretation of the data, analytical ultracentrifugation (AUC) is used to define the precise molecular weights and solution association of the peptides. Molecular dynamics simulations reveal the associated intra- and intermolecular binding changes in terms of intrinsic vs. extrinsic charge compensation, the role of hydrogen bonding, and secondary structure changes, aiding in the interpretation of the experimental data. We combine the data to reveal the pH dependency of PLL/PGA complexation and the associated molecular level mechanisms. This work shows that not only pH provides a means to control complex formation but also that the associated changes in the secondary structure and binding conformation can be systematically used to control materials assembly. This gives access to rational design of peptide materials via pH control.


Assuntos
Ácido Glutâmico , Polilisina , Polilisina/química , Peptídeos/química , Estrutura Secundária de Proteína , Concentração de Íons de Hidrogênio , Dicroísmo Circular
3.
Actual. psicol. (Impr.) ; 35(131)dic. 2021.
Artigo em Espanhol | LILACS, SaludCR, PsiArg | ID: biblio-1383507

RESUMO

Resumen Objetivo. Conocer la experiencia de personas físicamente activas por un largo plazo desde tres etapas: inicio de la vida activa, motivación actual y afrontamiento a las barreras. Método. Se realiza un análisis fenomenológico a partir de entrevistas examinadas a profundidad. N = 11 de personas adultas que han sido activas a un nivel suficiente por los últimos 10 años. Resultados. Surgieron cuatro categorías que describen: la vivencia autónoma, la decisión, el gusto adquirido desde la infancia y el hábito para regular emociones. A manera de conclusión, al conocer las características de la experiencia en la actividad física en personas activas, se confirmó aspectos sobre la motivación autodeterminada, lo que sugiere la presencia de elementos útiles en la intervención dirigida a la activación a largo plazo.


Abstract Objective. To know the experience of long-term active people to understand their relationship with physical practice in three stages: beginning of active life, current motivation, and facing barriers. Method. A phenomenological analysis was done on in-depth interviews. N = 11 adults have been active at a sufficient level for, at least, the last 10 years. Results. Four categories were found: the autonomous experience, the decision making, the preference for an active life acquired since childhood, and the habit through which they regulate their emotions. As a conclusion, the characteristics of the experience of active people with physical activity confirmed aspects about self-determined motivation. Useful elements are suggested in the intervention aimed at long-term activation.


Assuntos
Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Exercício Físico/psicologia , Motivação , Autonomia Pessoal , México
4.
J Phys Chem B ; 124(14): 2961-2972, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32182068

RESUMO

Microsecond-long all-atom molecular dynamics (MD) simulations, circular dichroism, laser Doppler velocimetry, and dynamic light-scattering techniques have been used to investigate pH-induced changes in the secondary structure, charge, and conformation of poly l-lysine (PLL) and poly l-glutamic acid (PGA). The employed combination of the experimental methods reveals for both PLL and PGA a narrow pH range at which they are charged enough to form stable colloidal suspensions, maintaining their α-helix content above 60%; an elevated charge state of the peptides required for colloidal stability promotes the peptide solvation as a random coil. To obtain a more microscopic view on the conformations and to verify the modeling performance, peptide secondary structure and conformations rising in MD simulations are also examined using three different force fields, i.e., OPLS-AA, CHARMM27, and AMBER99SB*-ILDNP. Ramachandran plots reveal that in the examined setup the α-helix content is systematically overestimated in CHARMM27, while OPLS-AA overestimates the ß-sheet fraction at lower ionization degrees. At high ionization degrees, the OPLS-AA force-field-predicted secondary structure fractions match the experimentally measured distribution most closely. However, the pH-induced changes in PLL and PGA secondary structure are reasonably captured only by the AMBER99SB*-ILDNP force field, with the exception of the fully charged PGA in which the α-helix content is overestimated. The comparison to simulations results shows that the examined force fields involve significant deviations in their predictions for charged homopolypeptides. The detailed mapping of secondary structure dependency on pH for the polypeptides, especially finding the stable colloidal α-helical regime for both examined peptides, has significant potential for practical applications of the charged homopolypeptides. The findings raise attention especially to the pH fine tuning as an underappreciated control factor in surface modification and self-assembly.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Estrutura Secundária de Proteína
5.
J Colloid Interface Sci ; 503: 186-197, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28525826

RESUMO

Manganese-doped ZnS quantum dots (QDs) stabilized by cysteamine hydrochloride were successfully synthesized. Their thorough physicochemical characteristics were acquired using UV-Vis absorption and photoluminescence spectroscopy, X-ray diffraction, dynamic light scattering (DLS), transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS) and Fourier transform infrared (FT-IR) spectroscopy. The average particle size, derived from HR-TEM, was 3.1nm, which agrees with the hydrodynamic diameter acquired by DLS, that was equal to 3-4nm, depending on ionic strength. The quantum dots also exhibited a large positive zeta potential varying between 75 and 36mV for ionic strength of 10-4 and 10-2M, respectively (at pH 6.2) and an intense luminescent emission at 590nm. The quantum yield was equal to 31% and the optical band gap energy was equal to 4.26eV. The kinetics of QD monolayer formation on silica substrates (silica sensors and oxidized silicon wafers) under convection-controlled transport was quantitatively evaluated by the quartz crystal microbalance (QCM) and the streaming potential measurements. A high stability of the monolayer for ionic strength 10-4 and 10-2M was confirmed in these measurements. The experimental data were adequately reflected by the extended random sequential adsorption model (eRSA). Additionally, thorough electrokinetic characteristics of the QD monolayers and their stability for various ionic strengths and pH were acquired by streaming potential measurements carried out under in situ conditions. These results were quantitatively interpreted in terms of the three-dimensional (3D) electrokinetic model that furnished bulk zeta potential of particles for high ionic strengths that is impractical by other experimental techniques. It is concluded that these results can be used for designing of biosensors of controlled monolayer structure capable to bind various ligands via covalent as well as electrostatic interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA